Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}+12x+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\left(-2\right)\times 3}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\left(-2\right)\times 3}}{2\left(-2\right)}
Square 12.
x=\frac{-12±\sqrt{144+8\times 3}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-12±\sqrt{144+24}}{2\left(-2\right)}
Multiply 8 times 3.
x=\frac{-12±\sqrt{168}}{2\left(-2\right)}
Add 144 to 24.
x=\frac{-12±2\sqrt{42}}{2\left(-2\right)}
Take the square root of 168.
x=\frac{-12±2\sqrt{42}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{42}-12}{-4}
Now solve the equation x=\frac{-12±2\sqrt{42}}{-4} when ± is plus. Add -12 to 2\sqrt{42}.
x=-\frac{\sqrt{42}}{2}+3
Divide -12+2\sqrt{42} by -4.
x=\frac{-2\sqrt{42}-12}{-4}
Now solve the equation x=\frac{-12±2\sqrt{42}}{-4} when ± is minus. Subtract 2\sqrt{42} from -12.
x=\frac{\sqrt{42}}{2}+3
Divide -12-2\sqrt{42} by -4.
-2x^{2}+12x+3=-2\left(x-\left(-\frac{\sqrt{42}}{2}+3\right)\right)\left(x-\left(\frac{\sqrt{42}}{2}+3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3-\frac{\sqrt{42}}{2} for x_{1} and 3+\frac{\sqrt{42}}{2} for x_{2}.