Solve for r
r=\frac{\sqrt{15}}{7}\approx 0.553283335
r=-\frac{\sqrt{15}}{7}\approx -0.553283335
Share
Copied to clipboard
15=\frac{1}{2}\times 98r^{2}
Add 3 and 12 to get 15.
15=49r^{2}
Multiply \frac{1}{2} and 98 to get 49.
49r^{2}=15
Swap sides so that all variable terms are on the left hand side.
r^{2}=\frac{15}{49}
Divide both sides by 49.
r=\frac{\sqrt{15}}{7} r=-\frac{\sqrt{15}}{7}
Take the square root of both sides of the equation.
15=\frac{1}{2}\times 98r^{2}
Add 3 and 12 to get 15.
15=49r^{2}
Multiply \frac{1}{2} and 98 to get 49.
49r^{2}=15
Swap sides so that all variable terms are on the left hand side.
49r^{2}-15=0
Subtract 15 from both sides.
r=\frac{0±\sqrt{0^{2}-4\times 49\left(-15\right)}}{2\times 49}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 49 for a, 0 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\times 49\left(-15\right)}}{2\times 49}
Square 0.
r=\frac{0±\sqrt{-196\left(-15\right)}}{2\times 49}
Multiply -4 times 49.
r=\frac{0±\sqrt{2940}}{2\times 49}
Multiply -196 times -15.
r=\frac{0±14\sqrt{15}}{2\times 49}
Take the square root of 2940.
r=\frac{0±14\sqrt{15}}{98}
Multiply 2 times 49.
r=\frac{\sqrt{15}}{7}
Now solve the equation r=\frac{0±14\sqrt{15}}{98} when ± is plus.
r=-\frac{\sqrt{15}}{7}
Now solve the equation r=\frac{0±14\sqrt{15}}{98} when ± is minus.
r=\frac{\sqrt{15}}{7} r=-\frac{\sqrt{15}}{7}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}