Solve for x
x=-\frac{225y}{28}+\frac{100595}{7}
Solve for y
y=-\frac{28x}{225}+\frac{80476}{45}
Graph
Share
Copied to clipboard
0.56x+4.5y=8050.6-3
Subtract 3 from both sides.
0.56x+4.5y=8047.6
Subtract 3 from 8050.6 to get 8047.6.
0.56x=8047.6-4.5y
Subtract 4.5y from both sides.
0.56x=-\frac{9y}{2}+8047.6
The equation is in standard form.
\frac{0.56x}{0.56}=\frac{-\frac{9y}{2}+8047.6}{0.56}
Divide both sides of the equation by 0.56, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{-\frac{9y}{2}+8047.6}{0.56}
Dividing by 0.56 undoes the multiplication by 0.56.
x=-\frac{225y}{28}+\frac{100595}{7}
Divide 8047.6-\frac{9y}{2} by 0.56 by multiplying 8047.6-\frac{9y}{2} by the reciprocal of 0.56.
0.56x+4.5y=8050.6-3
Subtract 3 from both sides.
0.56x+4.5y=8047.6
Subtract 3 from 8050.6 to get 8047.6.
4.5y=8047.6-0.56x
Subtract 0.56x from both sides.
4.5y=-\frac{14x}{25}+8047.6
The equation is in standard form.
\frac{4.5y}{4.5}=\frac{-\frac{14x}{25}+8047.6}{4.5}
Divide both sides of the equation by 4.5, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-\frac{14x}{25}+8047.6}{4.5}
Dividing by 4.5 undoes the multiplication by 4.5.
y=-\frac{28x}{225}+\frac{80476}{45}
Divide 8047.6-\frac{14x}{25} by 4.5 by multiplying 8047.6-\frac{14x}{25} by the reciprocal of 4.5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}