Evaluate
12
Factor
2^{2}\times 3
Share
Copied to clipboard
3+\frac{\frac{10}{2}-\frac{1}{2}}{\frac{\frac{5}{26}}{\frac{5}{13}}}
Convert 5 to fraction \frac{10}{2}.
3+\frac{\frac{10-1}{2}}{\frac{\frac{5}{26}}{\frac{5}{13}}}
Since \frac{10}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
3+\frac{\frac{9}{2}}{\frac{\frac{5}{26}}{\frac{5}{13}}}
Subtract 1 from 10 to get 9.
3+\frac{\frac{9}{2}}{\frac{5}{26}\times \frac{13}{5}}
Divide \frac{5}{26} by \frac{5}{13} by multiplying \frac{5}{26} by the reciprocal of \frac{5}{13}.
3+\frac{\frac{9}{2}}{\frac{5\times 13}{26\times 5}}
Multiply \frac{5}{26} times \frac{13}{5} by multiplying numerator times numerator and denominator times denominator.
3+\frac{\frac{9}{2}}{\frac{13}{26}}
Cancel out 5 in both numerator and denominator.
3+\frac{\frac{9}{2}}{\frac{1}{2}}
Reduce the fraction \frac{13}{26} to lowest terms by extracting and canceling out 13.
3+\frac{9}{2}\times 2
Divide \frac{9}{2} by \frac{1}{2} by multiplying \frac{9}{2} by the reciprocal of \frac{1}{2}.
3+9
Cancel out 2 and 2.
12
Add 3 and 9 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}