Solve for x
x = \frac{28}{9} = 3\frac{1}{9} \approx 3.111111111
Graph
Share
Copied to clipboard
\sqrt{x-3}=4-\sqrt{4x-12}-3
Subtract 3 from both sides of the equation.
\sqrt{x-3}=1-\sqrt{4x-12}
Subtract 3 from 4 to get 1.
\left(\sqrt{x-3}\right)^{2}=\left(1-\sqrt{4x-12}\right)^{2}
Square both sides of the equation.
x-3=\left(1-\sqrt{4x-12}\right)^{2}
Calculate \sqrt{x-3} to the power of 2 and get x-3.
x-3=1-2\sqrt{4x-12}+\left(\sqrt{4x-12}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{4x-12}\right)^{2}.
x-3=1-2\sqrt{4x-12}+4x-12
Calculate \sqrt{4x-12} to the power of 2 and get 4x-12.
x-3=-11-2\sqrt{4x-12}+4x
Subtract 12 from 1 to get -11.
x-3-\left(-11+4x\right)=-2\sqrt{4x-12}
Subtract -11+4x from both sides of the equation.
x-3+11-4x=-2\sqrt{4x-12}
To find the opposite of -11+4x, find the opposite of each term.
x+8-4x=-2\sqrt{4x-12}
Add -3 and 11 to get 8.
-3x+8=-2\sqrt{4x-12}
Combine x and -4x to get -3x.
\left(-3x+8\right)^{2}=\left(-2\sqrt{4x-12}\right)^{2}
Square both sides of the equation.
9x^{2}-48x+64=\left(-2\sqrt{4x-12}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-3x+8\right)^{2}.
9x^{2}-48x+64=\left(-2\right)^{2}\left(\sqrt{4x-12}\right)^{2}
Expand \left(-2\sqrt{4x-12}\right)^{2}.
9x^{2}-48x+64=4\left(\sqrt{4x-12}\right)^{2}
Calculate -2 to the power of 2 and get 4.
9x^{2}-48x+64=4\left(4x-12\right)
Calculate \sqrt{4x-12} to the power of 2 and get 4x-12.
9x^{2}-48x+64=16x-48
Use the distributive property to multiply 4 by 4x-12.
9x^{2}-48x+64-16x=-48
Subtract 16x from both sides.
9x^{2}-64x+64=-48
Combine -48x and -16x to get -64x.
9x^{2}-64x+64+48=0
Add 48 to both sides.
9x^{2}-64x+112=0
Add 64 and 48 to get 112.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 9\times 112}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -64 for b, and 112 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-64\right)±\sqrt{4096-4\times 9\times 112}}{2\times 9}
Square -64.
x=\frac{-\left(-64\right)±\sqrt{4096-36\times 112}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-64\right)±\sqrt{4096-4032}}{2\times 9}
Multiply -36 times 112.
x=\frac{-\left(-64\right)±\sqrt{64}}{2\times 9}
Add 4096 to -4032.
x=\frac{-\left(-64\right)±8}{2\times 9}
Take the square root of 64.
x=\frac{64±8}{2\times 9}
The opposite of -64 is 64.
x=\frac{64±8}{18}
Multiply 2 times 9.
x=\frac{72}{18}
Now solve the equation x=\frac{64±8}{18} when ± is plus. Add 64 to 8.
x=4
Divide 72 by 18.
x=\frac{56}{18}
Now solve the equation x=\frac{64±8}{18} when ± is minus. Subtract 8 from 64.
x=\frac{28}{9}
Reduce the fraction \frac{56}{18} to lowest terms by extracting and canceling out 2.
x=4 x=\frac{28}{9}
The equation is now solved.
3+\sqrt{4-3}=4-\sqrt{4\times 4-12}
Substitute 4 for x in the equation 3+\sqrt{x-3}=4-\sqrt{4x-12}.
4=2
Simplify. The value x=4 does not satisfy the equation.
3+\sqrt{\frac{28}{9}-3}=4-\sqrt{4\times \frac{28}{9}-12}
Substitute \frac{28}{9} for x in the equation 3+\sqrt{x-3}=4-\sqrt{4x-12}.
\frac{10}{3}=\frac{10}{3}
Simplify. The value x=\frac{28}{9} satisfies the equation.
x=\frac{28}{9}
Equation \sqrt{x-3}=-\sqrt{4x-12}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}