Solve for x
x=7
x=3
Graph
Share
Copied to clipboard
\sqrt{4x-12}=x-3
Subtract 3 from both sides of the equation.
\left(\sqrt{4x-12}\right)^{2}=\left(x-3\right)^{2}
Square both sides of the equation.
4x-12=\left(x-3\right)^{2}
Calculate \sqrt{4x-12} to the power of 2 and get 4x-12.
4x-12=x^{2}-6x+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
4x-12-x^{2}=-6x+9
Subtract x^{2} from both sides.
4x-12-x^{2}+6x=9
Add 6x to both sides.
10x-12-x^{2}=9
Combine 4x and 6x to get 10x.
10x-12-x^{2}-9=0
Subtract 9 from both sides.
10x-21-x^{2}=0
Subtract 9 from -12 to get -21.
-x^{2}+10x-21=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=10 ab=-\left(-21\right)=21
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-21. To find a and b, set up a system to be solved.
1,21 3,7
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 21.
1+21=22 3+7=10
Calculate the sum for each pair.
a=7 b=3
The solution is the pair that gives sum 10.
\left(-x^{2}+7x\right)+\left(3x-21\right)
Rewrite -x^{2}+10x-21 as \left(-x^{2}+7x\right)+\left(3x-21\right).
-x\left(x-7\right)+3\left(x-7\right)
Factor out -x in the first and 3 in the second group.
\left(x-7\right)\left(-x+3\right)
Factor out common term x-7 by using distributive property.
x=7 x=3
To find equation solutions, solve x-7=0 and -x+3=0.
3+\sqrt{4\times 7-12}=7
Substitute 7 for x in the equation 3+\sqrt{4x-12}=x.
7=7
Simplify. The value x=7 satisfies the equation.
3+\sqrt{4\times 3-12}=3
Substitute 3 for x in the equation 3+\sqrt{4x-12}=x.
3=3
Simplify. The value x=3 satisfies the equation.
x=7 x=3
List all solutions of \sqrt{4x-12}=x-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}