Solve for x
x=3\sqrt{3}+9\approx 14.196152423
Graph
Share
Copied to clipboard
3+\frac{x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}=x-3
Rationalize the denominator of \frac{x}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
3+\frac{x\sqrt{3}}{3}=x-3
The square of \sqrt{3} is 3.
3+\frac{x\sqrt{3}}{3}-x=-3
Subtract x from both sides.
\frac{x\sqrt{3}}{3}-x=-3-3
Subtract 3 from both sides.
\frac{x\sqrt{3}}{3}-x=-6
Subtract 3 from -3 to get -6.
x\sqrt{3}-3x=-18
Multiply both sides of the equation by 3.
\left(\sqrt{3}-3\right)x=-18
Combine all terms containing x.
\frac{\left(\sqrt{3}-3\right)x}{\sqrt{3}-3}=-\frac{18}{\sqrt{3}-3}
Divide both sides by \sqrt{3}-3.
x=-\frac{18}{\sqrt{3}-3}
Dividing by \sqrt{3}-3 undoes the multiplication by \sqrt{3}-3.
x=3\sqrt{3}+9
Divide -18 by \sqrt{3}-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}