Solve for x (complex solution)
x=\frac{11+\sqrt{455}i}{3}\approx 3.666666667+7.110243003i
x=\frac{-\sqrt{455}i+11}{3}\approx 3.666666667-7.110243003i
Graph
Share
Copied to clipboard
x\left(x-4\right)\times 3+x\times 38=\left(x-4\right)\times 48
Variable x cannot be equal to any of the values 0,4 since division by zero is not defined. Multiply both sides of the equation by x\left(x-4\right), the least common multiple of x-4,x.
\left(x^{2}-4x\right)\times 3+x\times 38=\left(x-4\right)\times 48
Use the distributive property to multiply x by x-4.
3x^{2}-12x+x\times 38=\left(x-4\right)\times 48
Use the distributive property to multiply x^{2}-4x by 3.
3x^{2}+26x=\left(x-4\right)\times 48
Combine -12x and x\times 38 to get 26x.
3x^{2}+26x=48x-192
Use the distributive property to multiply x-4 by 48.
3x^{2}+26x-48x=-192
Subtract 48x from both sides.
3x^{2}-22x=-192
Combine 26x and -48x to get -22x.
3x^{2}-22x+192=0
Add 192 to both sides.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 3\times 192}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -22 for b, and 192 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-22\right)±\sqrt{484-4\times 3\times 192}}{2\times 3}
Square -22.
x=\frac{-\left(-22\right)±\sqrt{484-12\times 192}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-22\right)±\sqrt{484-2304}}{2\times 3}
Multiply -12 times 192.
x=\frac{-\left(-22\right)±\sqrt{-1820}}{2\times 3}
Add 484 to -2304.
x=\frac{-\left(-22\right)±2\sqrt{455}i}{2\times 3}
Take the square root of -1820.
x=\frac{22±2\sqrt{455}i}{2\times 3}
The opposite of -22 is 22.
x=\frac{22±2\sqrt{455}i}{6}
Multiply 2 times 3.
x=\frac{22+2\sqrt{455}i}{6}
Now solve the equation x=\frac{22±2\sqrt{455}i}{6} when ± is plus. Add 22 to 2i\sqrt{455}.
x=\frac{11+\sqrt{455}i}{3}
Divide 22+2i\sqrt{455} by 6.
x=\frac{-2\sqrt{455}i+22}{6}
Now solve the equation x=\frac{22±2\sqrt{455}i}{6} when ± is minus. Subtract 2i\sqrt{455} from 22.
x=\frac{-\sqrt{455}i+11}{3}
Divide 22-2i\sqrt{455} by 6.
x=\frac{11+\sqrt{455}i}{3} x=\frac{-\sqrt{455}i+11}{3}
The equation is now solved.
x\left(x-4\right)\times 3+x\times 38=\left(x-4\right)\times 48
Variable x cannot be equal to any of the values 0,4 since division by zero is not defined. Multiply both sides of the equation by x\left(x-4\right), the least common multiple of x-4,x.
\left(x^{2}-4x\right)\times 3+x\times 38=\left(x-4\right)\times 48
Use the distributive property to multiply x by x-4.
3x^{2}-12x+x\times 38=\left(x-4\right)\times 48
Use the distributive property to multiply x^{2}-4x by 3.
3x^{2}+26x=\left(x-4\right)\times 48
Combine -12x and x\times 38 to get 26x.
3x^{2}+26x=48x-192
Use the distributive property to multiply x-4 by 48.
3x^{2}+26x-48x=-192
Subtract 48x from both sides.
3x^{2}-22x=-192
Combine 26x and -48x to get -22x.
\frac{3x^{2}-22x}{3}=-\frac{192}{3}
Divide both sides by 3.
x^{2}-\frac{22}{3}x=-\frac{192}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{22}{3}x=-64
Divide -192 by 3.
x^{2}-\frac{22}{3}x+\left(-\frac{11}{3}\right)^{2}=-64+\left(-\frac{11}{3}\right)^{2}
Divide -\frac{22}{3}, the coefficient of the x term, by 2 to get -\frac{11}{3}. Then add the square of -\frac{11}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{22}{3}x+\frac{121}{9}=-64+\frac{121}{9}
Square -\frac{11}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{22}{3}x+\frac{121}{9}=-\frac{455}{9}
Add -64 to \frac{121}{9}.
\left(x-\frac{11}{3}\right)^{2}=-\frac{455}{9}
Factor x^{2}-\frac{22}{3}x+\frac{121}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{3}\right)^{2}}=\sqrt{-\frac{455}{9}}
Take the square root of both sides of the equation.
x-\frac{11}{3}=\frac{\sqrt{455}i}{3} x-\frac{11}{3}=-\frac{\sqrt{455}i}{3}
Simplify.
x=\frac{11+\sqrt{455}i}{3} x=\frac{-\sqrt{455}i+11}{3}
Add \frac{11}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}