Solve for m
m=-\frac{n}{3n-20}
n\neq 0\text{ and }n\neq \frac{20}{3}
Solve for n
n=\frac{20m}{3m+1}
m\neq 0\text{ and }m\neq -\frac{1}{3}
Share
Copied to clipboard
mn\times 3+n-m\times 20=0
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by mn, the least common multiple of m,n.
mn\times 3-m\times 20=-n
Subtract n from both sides. Anything subtracted from zero gives its negation.
mn\times 3-20m=-n
Multiply -1 and 20 to get -20.
\left(n\times 3-20\right)m=-n
Combine all terms containing m.
\left(3n-20\right)m=-n
The equation is in standard form.
\frac{\left(3n-20\right)m}{3n-20}=-\frac{n}{3n-20}
Divide both sides by -20+3n.
m=-\frac{n}{3n-20}
Dividing by -20+3n undoes the multiplication by -20+3n.
m=-\frac{n}{3n-20}\text{, }m\neq 0
Variable m cannot be equal to 0.
mn\times 3+n-m\times 20=0
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by mn, the least common multiple of m,n.
mn\times 3+n=m\times 20
Add m\times 20 to both sides. Anything plus zero gives itself.
\left(m\times 3+1\right)n=m\times 20
Combine all terms containing n.
\left(3m+1\right)n=20m
The equation is in standard form.
\frac{\left(3m+1\right)n}{3m+1}=\frac{20m}{3m+1}
Divide both sides by 3m+1.
n=\frac{20m}{3m+1}
Dividing by 3m+1 undoes the multiplication by 3m+1.
n=\frac{20m}{3m+1}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}