Evaluate
\frac{8719}{120}\approx 72.658333333
Factor
\frac{8719}{2 ^ {3} \cdot 3 \cdot 5} = 72\frac{79}{120} = 72.65833333333333
Share
Copied to clipboard
\frac{15+6}{5}+\frac{6\times 8+5}{8}\times \frac{9\times 3+4}{3}
Multiply 3 and 5 to get 15.
\frac{21}{5}+\frac{6\times 8+5}{8}\times \frac{9\times 3+4}{3}
Add 15 and 6 to get 21.
\frac{21}{5}+\frac{48+5}{8}\times \frac{9\times 3+4}{3}
Multiply 6 and 8 to get 48.
\frac{21}{5}+\frac{53}{8}\times \frac{9\times 3+4}{3}
Add 48 and 5 to get 53.
\frac{21}{5}+\frac{53}{8}\times \frac{27+4}{3}
Multiply 9 and 3 to get 27.
\frac{21}{5}+\frac{53}{8}\times \frac{31}{3}
Add 27 and 4 to get 31.
\frac{21}{5}+\frac{53\times 31}{8\times 3}
Multiply \frac{53}{8} times \frac{31}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{21}{5}+\frac{1643}{24}
Do the multiplications in the fraction \frac{53\times 31}{8\times 3}.
\frac{504}{120}+\frac{8215}{120}
Least common multiple of 5 and 24 is 120. Convert \frac{21}{5} and \frac{1643}{24} to fractions with denominator 120.
\frac{504+8215}{120}
Since \frac{504}{120} and \frac{8215}{120} have the same denominator, add them by adding their numerators.
\frac{8719}{120}
Add 504 and 8215 to get 8719.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}