Solve for x
x=\frac{11}{2x_{2}^{4}}
x_{2}\neq 0
Solve for x_2 (complex solution)
x_{2}=\frac{2^{\frac{3}{4}}\sqrt[4]{11}ix^{-\frac{1}{4}}}{2}
x_{2}=\frac{2^{\frac{3}{4}}\sqrt[4]{11}x^{-\frac{1}{4}}}{2}
x_{2}=-\frac{2^{\frac{3}{4}}\sqrt[4]{11}x^{-\frac{1}{4}}}{2}
x_{2}=-\frac{2^{\frac{3}{4}}\sqrt[4]{11}ix^{-\frac{1}{4}}}{2}\text{, }x\neq 0
Solve for x_2
x_{2}=\frac{\sqrt[4]{\frac{88}{x}}}{2}
x_{2}=-\frac{\sqrt[4]{\frac{88}{x}}}{2}\text{, }x>0
Graph
Share
Copied to clipboard
2x_{2}^{2}x_{2}x_{2}x=11
Multiply x_{2} and x_{2} to get x_{2}^{2}.
2x_{2}^{3}x_{2}x=11
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
2x_{2}^{4}x=11
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{2x_{2}^{4}x}{2x_{2}^{4}}=\frac{11}{2x_{2}^{4}}
Divide both sides by 2x_{2}^{4}.
x=\frac{11}{2x_{2}^{4}}
Dividing by 2x_{2}^{4} undoes the multiplication by 2x_{2}^{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}