Solve for x
x=-\frac{iy}{2}+\left(\frac{3}{2}+i\right)
Solve for y
y=2ix+\left(2-3i\right)
Share
Copied to clipboard
2x-\left(-1+2i\right)=4-yi
Multiply i and 2+i to get -1+2i.
2x=4-yi+\left(-1+2i\right)
Add -1+2i to both sides.
2x=-yi+3+2i
Do the additions in 4+\left(-1+2i\right).
2x=-iy+3+2i
Multiply -1 and i to get -i.
2x=3+2i-iy
The equation is in standard form.
\frac{2x}{2}=\frac{3+2i-iy}{2}
Divide both sides by 2.
x=\frac{3+2i-iy}{2}
Dividing by 2 undoes the multiplication by 2.
x=-\frac{iy}{2}+\left(\frac{3}{2}+i\right)
Divide -iy+\left(3+2i\right) by 2.
2x-\left(-1+2i\right)=4-yi
Multiply i and 2+i to get -1+2i.
4-yi=2x-\left(-1+2i\right)
Swap sides so that all variable terms are on the left hand side.
4-iy=2x-\left(-1+2i\right)
Multiply -1 and i to get -i.
4-iy=2x+\left(1-2i\right)
Multiply -1 and -1+2i to get 1-2i.
-iy=2x+\left(1-2i\right)-4
Subtract 4 from both sides.
-iy=2x-3-2i
Do the additions in 1-2i-4.
-iy=2x+\left(-3-2i\right)
The equation is in standard form.
\frac{-iy}{-i}=\frac{2x+\left(-3-2i\right)}{-i}
Divide both sides by -i.
y=\frac{2x+\left(-3-2i\right)}{-i}
Dividing by -i undoes the multiplication by -i.
y=2ix+\left(2-3i\right)
Divide 2x+\left(-3-2i\right) by -i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}