Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x-8x\times 9x=-38x
Combine 4x and 5x to get 9x.
2x-72xx=-38x
Multiply 8 and 9 to get 72.
2x-72x^{2}=-38x
Multiply x and x to get x^{2}.
2x-72x^{2}+38x=0
Add 38x to both sides.
40x-72x^{2}=0
Combine 2x and 38x to get 40x.
x\left(40-72x\right)=0
Factor out x.
x=0 x=\frac{5}{9}
To find equation solutions, solve x=0 and 40-72x=0.
2x-8x\times 9x=-38x
Combine 4x and 5x to get 9x.
2x-72xx=-38x
Multiply 8 and 9 to get 72.
2x-72x^{2}=-38x
Multiply x and x to get x^{2}.
2x-72x^{2}+38x=0
Add 38x to both sides.
40x-72x^{2}=0
Combine 2x and 38x to get 40x.
-72x^{2}+40x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-40±\sqrt{40^{2}}}{2\left(-72\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -72 for a, 40 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±40}{2\left(-72\right)}
Take the square root of 40^{2}.
x=\frac{-40±40}{-144}
Multiply 2 times -72.
x=\frac{0}{-144}
Now solve the equation x=\frac{-40±40}{-144} when ± is plus. Add -40 to 40.
x=0
Divide 0 by -144.
x=-\frac{80}{-144}
Now solve the equation x=\frac{-40±40}{-144} when ± is minus. Subtract 40 from -40.
x=\frac{5}{9}
Reduce the fraction \frac{-80}{-144} to lowest terms by extracting and canceling out 16.
x=0 x=\frac{5}{9}
The equation is now solved.
2x-8x\times 9x=-38x
Combine 4x and 5x to get 9x.
2x-72xx=-38x
Multiply 8 and 9 to get 72.
2x-72x^{2}=-38x
Multiply x and x to get x^{2}.
2x-72x^{2}+38x=0
Add 38x to both sides.
40x-72x^{2}=0
Combine 2x and 38x to get 40x.
-72x^{2}+40x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-72x^{2}+40x}{-72}=\frac{0}{-72}
Divide both sides by -72.
x^{2}+\frac{40}{-72}x=\frac{0}{-72}
Dividing by -72 undoes the multiplication by -72.
x^{2}-\frac{5}{9}x=\frac{0}{-72}
Reduce the fraction \frac{40}{-72} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{5}{9}x=0
Divide 0 by -72.
x^{2}-\frac{5}{9}x+\left(-\frac{5}{18}\right)^{2}=\left(-\frac{5}{18}\right)^{2}
Divide -\frac{5}{9}, the coefficient of the x term, by 2 to get -\frac{5}{18}. Then add the square of -\frac{5}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{9}x+\frac{25}{324}=\frac{25}{324}
Square -\frac{5}{18} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{5}{18}\right)^{2}=\frac{25}{324}
Factor x^{2}-\frac{5}{9}x+\frac{25}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{18}\right)^{2}}=\sqrt{\frac{25}{324}}
Take the square root of both sides of the equation.
x-\frac{5}{18}=\frac{5}{18} x-\frac{5}{18}=-\frac{5}{18}
Simplify.
x=\frac{5}{9} x=0
Add \frac{5}{18} to both sides of the equation.