Solve for x
x=\frac{600}{3y+1}
y\neq -\frac{1}{3}
Solve for y
y=-\frac{1}{3}+\frac{200}{x}
x\neq 0
Graph
Share
Copied to clipboard
x-527-6+3xy-28=39
Combine 2x and -x to get x.
x-533+3xy-28=39
Subtract 6 from -527 to get -533.
x-561+3xy=39
Subtract 28 from -533 to get -561.
x+3xy=39+561
Add 561 to both sides.
x+3xy=600
Add 39 and 561 to get 600.
\left(1+3y\right)x=600
Combine all terms containing x.
\left(3y+1\right)x=600
The equation is in standard form.
\frac{\left(3y+1\right)x}{3y+1}=\frac{600}{3y+1}
Divide both sides by 1+3y.
x=\frac{600}{3y+1}
Dividing by 1+3y undoes the multiplication by 1+3y.
x-527-6+3xy-28=39
Combine 2x and -x to get x.
x-533+3xy-28=39
Subtract 6 from -527 to get -533.
x-561+3xy=39
Subtract 28 from -533 to get -561.
-561+3xy=39-x
Subtract x from both sides.
3xy=39-x+561
Add 561 to both sides.
3xy=600-x
Add 39 and 561 to get 600.
\frac{3xy}{3x}=\frac{600-x}{3x}
Divide both sides by 3x.
y=\frac{600-x}{3x}
Dividing by 3x undoes the multiplication by 3x.
y=-\frac{1}{3}+\frac{200}{x}
Divide 600-x by 3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}