Solve for x
x=\frac{115}{648}\approx 0.177469136
Graph
Share
Copied to clipboard
2x-\frac{40}{8}+\frac{5}{8}-3x=10-82x
Convert -5 to fraction -\frac{40}{8}.
2x+\frac{-40+5}{8}-3x=10-82x
Since -\frac{40}{8} and \frac{5}{8} have the same denominator, add them by adding their numerators.
2x-\frac{35}{8}-3x=10-82x
Add -40 and 5 to get -35.
-x-\frac{35}{8}=10-82x
Combine 2x and -3x to get -x.
-x-\frac{35}{8}+82x=10
Add 82x to both sides.
81x-\frac{35}{8}=10
Combine -x and 82x to get 81x.
81x=10+\frac{35}{8}
Add \frac{35}{8} to both sides.
81x=\frac{80}{8}+\frac{35}{8}
Convert 10 to fraction \frac{80}{8}.
81x=\frac{80+35}{8}
Since \frac{80}{8} and \frac{35}{8} have the same denominator, add them by adding their numerators.
81x=\frac{115}{8}
Add 80 and 35 to get 115.
x=\frac{\frac{115}{8}}{81}
Divide both sides by 81.
x=\frac{115}{8\times 81}
Express \frac{\frac{115}{8}}{81} as a single fraction.
x=\frac{115}{648}
Multiply 8 and 81 to get 648.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}