Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x-3-x^{2}=3x+1
Subtract x^{2} from both sides.
2x-3-x^{2}-3x=1
Subtract 3x from both sides.
-x-3-x^{2}=1
Combine 2x and -3x to get -x.
-x-3-x^{2}-1=0
Subtract 1 from both sides.
-x-4-x^{2}=0
Subtract 1 from -3 to get -4.
-x^{2}-x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\left(-4\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -1 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4\left(-4\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-1\right)±\sqrt{1-16}}{2\left(-1\right)}
Multiply 4 times -4.
x=\frac{-\left(-1\right)±\sqrt{-15}}{2\left(-1\right)}
Add 1 to -16.
x=\frac{-\left(-1\right)±\sqrt{15}i}{2\left(-1\right)}
Take the square root of -15.
x=\frac{1±\sqrt{15}i}{2\left(-1\right)}
The opposite of -1 is 1.
x=\frac{1±\sqrt{15}i}{-2}
Multiply 2 times -1.
x=\frac{1+\sqrt{15}i}{-2}
Now solve the equation x=\frac{1±\sqrt{15}i}{-2} when ± is plus. Add 1 to i\sqrt{15}.
x=\frac{-\sqrt{15}i-1}{2}
Divide 1+i\sqrt{15} by -2.
x=\frac{-\sqrt{15}i+1}{-2}
Now solve the equation x=\frac{1±\sqrt{15}i}{-2} when ± is minus. Subtract i\sqrt{15} from 1.
x=\frac{-1+\sqrt{15}i}{2}
Divide 1-i\sqrt{15} by -2.
x=\frac{-\sqrt{15}i-1}{2} x=\frac{-1+\sqrt{15}i}{2}
The equation is now solved.
2x-3-x^{2}=3x+1
Subtract x^{2} from both sides.
2x-3-x^{2}-3x=1
Subtract 3x from both sides.
-x-3-x^{2}=1
Combine 2x and -3x to get -x.
-x-x^{2}=1+3
Add 3 to both sides.
-x-x^{2}=4
Add 1 and 3 to get 4.
-x^{2}-x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-x}{-1}=\frac{4}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{1}{-1}\right)x=\frac{4}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+x=\frac{4}{-1}
Divide -1 by -1.
x^{2}+x=-4
Divide 4 by -1.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-4+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=-4+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=-\frac{15}{4}
Add -4 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=-\frac{15}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{15}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{15}i}{2} x+\frac{1}{2}=-\frac{\sqrt{15}i}{2}
Simplify.
x=\frac{-1+\sqrt{15}i}{2} x=\frac{-\sqrt{15}i-1}{2}
Subtract \frac{1}{2} from both sides of the equation.