Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2\sqrt{x^{2}-7x}=8-2x
Subtract 2x from both sides of the equation.
\left(-2\sqrt{x^{2}-7x}\right)^{2}=\left(8-2x\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{x^{2}-7x}\right)^{2}=\left(8-2x\right)^{2}
Expand \left(-2\sqrt{x^{2}-7x}\right)^{2}.
4\left(\sqrt{x^{2}-7x}\right)^{2}=\left(8-2x\right)^{2}
Calculate -2 to the power of 2 and get 4.
4\left(x^{2}-7x\right)=\left(8-2x\right)^{2}
Calculate \sqrt{x^{2}-7x} to the power of 2 and get x^{2}-7x.
4x^{2}-28x=\left(8-2x\right)^{2}
Use the distributive property to multiply 4 by x^{2}-7x.
4x^{2}-28x=64-32x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-2x\right)^{2}.
4x^{2}-28x+32x=64+4x^{2}
Add 32x to both sides.
4x^{2}+4x=64+4x^{2}
Combine -28x and 32x to get 4x.
4x^{2}+4x-4x^{2}=64
Subtract 4x^{2} from both sides.
4x=64
Combine 4x^{2} and -4x^{2} to get 0.
x=\frac{64}{4}
Divide both sides by 4.
x=16
Divide 64 by 4 to get 16.
2\times 16-2\sqrt{16^{2}-7\times 16}=8
Substitute 16 for x in the equation 2x-2\sqrt{x^{2}-7x}=8.
8=8
Simplify. The value x=16 satisfies the equation.
x=16
Equation -2\sqrt{x^{2}-7x}=8-2x has a unique solution.