Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x-25-\left(2x-3\right)\left(2x+3\right)=0
Calculate 5 to the power of 2 and get 25.
2x-25-\left(\left(2x\right)^{2}-9\right)=0
Consider \left(2x-3\right)\left(2x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
2x-25-\left(2^{2}x^{2}-9\right)=0
Expand \left(2x\right)^{2}.
2x-25-\left(4x^{2}-9\right)=0
Calculate 2 to the power of 2 and get 4.
2x-25-4x^{2}+9=0
To find the opposite of 4x^{2}-9, find the opposite of each term.
2x-16-4x^{2}=0
Add -25 and 9 to get -16.
-4x^{2}+2x-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)\left(-16\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 2 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)\left(-16\right)}}{2\left(-4\right)}
Square 2.
x=\frac{-2±\sqrt{4+16\left(-16\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-2±\sqrt{4-256}}{2\left(-4\right)}
Multiply 16 times -16.
x=\frac{-2±\sqrt{-252}}{2\left(-4\right)}
Add 4 to -256.
x=\frac{-2±6\sqrt{7}i}{2\left(-4\right)}
Take the square root of -252.
x=\frac{-2±6\sqrt{7}i}{-8}
Multiply 2 times -4.
x=\frac{-2+6\sqrt{7}i}{-8}
Now solve the equation x=\frac{-2±6\sqrt{7}i}{-8} when ± is plus. Add -2 to 6i\sqrt{7}.
x=\frac{-3\sqrt{7}i+1}{4}
Divide -2+6i\sqrt{7} by -8.
x=\frac{-6\sqrt{7}i-2}{-8}
Now solve the equation x=\frac{-2±6\sqrt{7}i}{-8} when ± is minus. Subtract 6i\sqrt{7} from -2.
x=\frac{1+3\sqrt{7}i}{4}
Divide -2-6i\sqrt{7} by -8.
x=\frac{-3\sqrt{7}i+1}{4} x=\frac{1+3\sqrt{7}i}{4}
The equation is now solved.
2x-25-\left(2x-3\right)\left(2x+3\right)=0
Calculate 5 to the power of 2 and get 25.
2x-25-\left(\left(2x\right)^{2}-9\right)=0
Consider \left(2x-3\right)\left(2x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
2x-25-\left(2^{2}x^{2}-9\right)=0
Expand \left(2x\right)^{2}.
2x-25-\left(4x^{2}-9\right)=0
Calculate 2 to the power of 2 and get 4.
2x-25-4x^{2}+9=0
To find the opposite of 4x^{2}-9, find the opposite of each term.
2x-16-4x^{2}=0
Add -25 and 9 to get -16.
2x-4x^{2}=16
Add 16 to both sides. Anything plus zero gives itself.
-4x^{2}+2x=16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+2x}{-4}=\frac{16}{-4}
Divide both sides by -4.
x^{2}+\frac{2}{-4}x=\frac{16}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{1}{2}x=\frac{16}{-4}
Reduce the fraction \frac{2}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{2}x=-4
Divide 16 by -4.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-4+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-4+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{63}{16}
Add -4 to \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=-\frac{63}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{63}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{3\sqrt{7}i}{4} x-\frac{1}{4}=-\frac{3\sqrt{7}i}{4}
Simplify.
x=\frac{1+3\sqrt{7}i}{4} x=\frac{-3\sqrt{7}i+1}{4}
Add \frac{1}{4} to both sides of the equation.