Solve for x
x\geq \frac{1}{56}
Graph
Share
Copied to clipboard
40x-4\left(x-1\right)\geq 5-20x
Multiply both sides of the equation by 20, the least common multiple of 5,4. Since 20 is positive, the inequality direction remains the same.
40x-4x+4\geq 5-20x
Use the distributive property to multiply -4 by x-1.
36x+4\geq 5-20x
Combine 40x and -4x to get 36x.
36x+4+20x\geq 5
Add 20x to both sides.
56x+4\geq 5
Combine 36x and 20x to get 56x.
56x\geq 5-4
Subtract 4 from both sides.
56x\geq 1
Subtract 4 from 5 to get 1.
x\geq \frac{1}{56}
Divide both sides by 56. Since 56 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}