Solve for x
x = \frac{3 \sqrt{481} + 93}{4} \approx 39.69878415
x = \frac{93 - 3 \sqrt{481}}{4} \approx 6.80121585
Graph
Share
Copied to clipboard
2x\left(93-2x\right)=1080
Add 91 and 2 to get 93.
186x-4x^{2}=1080
Use the distributive property to multiply 2x by 93-2x.
186x-4x^{2}-1080=0
Subtract 1080 from both sides.
-4x^{2}+186x-1080=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-186±\sqrt{186^{2}-4\left(-4\right)\left(-1080\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 186 for b, and -1080 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-186±\sqrt{34596-4\left(-4\right)\left(-1080\right)}}{2\left(-4\right)}
Square 186.
x=\frac{-186±\sqrt{34596+16\left(-1080\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-186±\sqrt{34596-17280}}{2\left(-4\right)}
Multiply 16 times -1080.
x=\frac{-186±\sqrt{17316}}{2\left(-4\right)}
Add 34596 to -17280.
x=\frac{-186±6\sqrt{481}}{2\left(-4\right)}
Take the square root of 17316.
x=\frac{-186±6\sqrt{481}}{-8}
Multiply 2 times -4.
x=\frac{6\sqrt{481}-186}{-8}
Now solve the equation x=\frac{-186±6\sqrt{481}}{-8} when ± is plus. Add -186 to 6\sqrt{481}.
x=\frac{93-3\sqrt{481}}{4}
Divide -186+6\sqrt{481} by -8.
x=\frac{-6\sqrt{481}-186}{-8}
Now solve the equation x=\frac{-186±6\sqrt{481}}{-8} when ± is minus. Subtract 6\sqrt{481} from -186.
x=\frac{3\sqrt{481}+93}{4}
Divide -186-6\sqrt{481} by -8.
x=\frac{93-3\sqrt{481}}{4} x=\frac{3\sqrt{481}+93}{4}
The equation is now solved.
2x\left(93-2x\right)=1080
Add 91 and 2 to get 93.
186x-4x^{2}=1080
Use the distributive property to multiply 2x by 93-2x.
-4x^{2}+186x=1080
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+186x}{-4}=\frac{1080}{-4}
Divide both sides by -4.
x^{2}+\frac{186}{-4}x=\frac{1080}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{93}{2}x=\frac{1080}{-4}
Reduce the fraction \frac{186}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{93}{2}x=-270
Divide 1080 by -4.
x^{2}-\frac{93}{2}x+\left(-\frac{93}{4}\right)^{2}=-270+\left(-\frac{93}{4}\right)^{2}
Divide -\frac{93}{2}, the coefficient of the x term, by 2 to get -\frac{93}{4}. Then add the square of -\frac{93}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{93}{2}x+\frac{8649}{16}=-270+\frac{8649}{16}
Square -\frac{93}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{93}{2}x+\frac{8649}{16}=\frac{4329}{16}
Add -270 to \frac{8649}{16}.
\left(x-\frac{93}{4}\right)^{2}=\frac{4329}{16}
Factor x^{2}-\frac{93}{2}x+\frac{8649}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{93}{4}\right)^{2}}=\sqrt{\frac{4329}{16}}
Take the square root of both sides of the equation.
x-\frac{93}{4}=\frac{3\sqrt{481}}{4} x-\frac{93}{4}=-\frac{3\sqrt{481}}{4}
Simplify.
x=\frac{3\sqrt{481}+93}{4} x=\frac{93-3\sqrt{481}}{4}
Add \frac{93}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}