Solve for x
x = \frac{\sqrt{181} + 19}{2} \approx 16.226812024
x = \frac{19 - \sqrt{181}}{2} \approx 2.773187976
Graph
Share
Copied to clipboard
76x-4x^{2}=180
Use the distributive property to multiply 2x by 38-2x.
76x-4x^{2}-180=0
Subtract 180 from both sides.
-4x^{2}+76x-180=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-76±\sqrt{76^{2}-4\left(-4\right)\left(-180\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 76 for b, and -180 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-76±\sqrt{5776-4\left(-4\right)\left(-180\right)}}{2\left(-4\right)}
Square 76.
x=\frac{-76±\sqrt{5776+16\left(-180\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-76±\sqrt{5776-2880}}{2\left(-4\right)}
Multiply 16 times -180.
x=\frac{-76±\sqrt{2896}}{2\left(-4\right)}
Add 5776 to -2880.
x=\frac{-76±4\sqrt{181}}{2\left(-4\right)}
Take the square root of 2896.
x=\frac{-76±4\sqrt{181}}{-8}
Multiply 2 times -4.
x=\frac{4\sqrt{181}-76}{-8}
Now solve the equation x=\frac{-76±4\sqrt{181}}{-8} when ± is plus. Add -76 to 4\sqrt{181}.
x=\frac{19-\sqrt{181}}{2}
Divide -76+4\sqrt{181} by -8.
x=\frac{-4\sqrt{181}-76}{-8}
Now solve the equation x=\frac{-76±4\sqrt{181}}{-8} when ± is minus. Subtract 4\sqrt{181} from -76.
x=\frac{\sqrt{181}+19}{2}
Divide -76-4\sqrt{181} by -8.
x=\frac{19-\sqrt{181}}{2} x=\frac{\sqrt{181}+19}{2}
The equation is now solved.
76x-4x^{2}=180
Use the distributive property to multiply 2x by 38-2x.
-4x^{2}+76x=180
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+76x}{-4}=\frac{180}{-4}
Divide both sides by -4.
x^{2}+\frac{76}{-4}x=\frac{180}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-19x=\frac{180}{-4}
Divide 76 by -4.
x^{2}-19x=-45
Divide 180 by -4.
x^{2}-19x+\left(-\frac{19}{2}\right)^{2}=-45+\left(-\frac{19}{2}\right)^{2}
Divide -19, the coefficient of the x term, by 2 to get -\frac{19}{2}. Then add the square of -\frac{19}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-19x+\frac{361}{4}=-45+\frac{361}{4}
Square -\frac{19}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-19x+\frac{361}{4}=\frac{181}{4}
Add -45 to \frac{361}{4}.
\left(x-\frac{19}{2}\right)^{2}=\frac{181}{4}
Factor x^{2}-19x+\frac{361}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{2}\right)^{2}}=\sqrt{\frac{181}{4}}
Take the square root of both sides of the equation.
x-\frac{19}{2}=\frac{\sqrt{181}}{2} x-\frac{19}{2}=-\frac{\sqrt{181}}{2}
Simplify.
x=\frac{\sqrt{181}+19}{2} x=\frac{19-\sqrt{181}}{2}
Add \frac{19}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}