Solve for x
x = \frac{\sqrt{8081} + 9}{4} \approx 24.723595618
x=\frac{9-\sqrt{8081}}{4}\approx -20.223595618
Graph
Share
Copied to clipboard
4x^{2}-20x+2x=2000
Use the distributive property to multiply 2x by 2x-10.
4x^{2}-18x=2000
Combine -20x and 2x to get -18x.
4x^{2}-18x-2000=0
Subtract 2000 from both sides.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 4\left(-2000\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -18 for b, and -2000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 4\left(-2000\right)}}{2\times 4}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-16\left(-2000\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-18\right)±\sqrt{324+32000}}{2\times 4}
Multiply -16 times -2000.
x=\frac{-\left(-18\right)±\sqrt{32324}}{2\times 4}
Add 324 to 32000.
x=\frac{-\left(-18\right)±2\sqrt{8081}}{2\times 4}
Take the square root of 32324.
x=\frac{18±2\sqrt{8081}}{2\times 4}
The opposite of -18 is 18.
x=\frac{18±2\sqrt{8081}}{8}
Multiply 2 times 4.
x=\frac{2\sqrt{8081}+18}{8}
Now solve the equation x=\frac{18±2\sqrt{8081}}{8} when ± is plus. Add 18 to 2\sqrt{8081}.
x=\frac{\sqrt{8081}+9}{4}
Divide 18+2\sqrt{8081} by 8.
x=\frac{18-2\sqrt{8081}}{8}
Now solve the equation x=\frac{18±2\sqrt{8081}}{8} when ± is minus. Subtract 2\sqrt{8081} from 18.
x=\frac{9-\sqrt{8081}}{4}
Divide 18-2\sqrt{8081} by 8.
x=\frac{\sqrt{8081}+9}{4} x=\frac{9-\sqrt{8081}}{4}
The equation is now solved.
4x^{2}-20x+2x=2000
Use the distributive property to multiply 2x by 2x-10.
4x^{2}-18x=2000
Combine -20x and 2x to get -18x.
\frac{4x^{2}-18x}{4}=\frac{2000}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{18}{4}\right)x=\frac{2000}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{9}{2}x=\frac{2000}{4}
Reduce the fraction \frac{-18}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{9}{2}x=500
Divide 2000 by 4.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=500+\left(-\frac{9}{4}\right)^{2}
Divide -\frac{9}{2}, the coefficient of the x term, by 2 to get -\frac{9}{4}. Then add the square of -\frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{2}x+\frac{81}{16}=500+\frac{81}{16}
Square -\frac{9}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{8081}{16}
Add 500 to \frac{81}{16}.
\left(x-\frac{9}{4}\right)^{2}=\frac{8081}{16}
Factor x^{2}-\frac{9}{2}x+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{8081}{16}}
Take the square root of both sides of the equation.
x-\frac{9}{4}=\frac{\sqrt{8081}}{4} x-\frac{9}{4}=-\frac{\sqrt{8081}}{4}
Simplify.
x=\frac{\sqrt{8081}+9}{4} x=\frac{9-\sqrt{8081}}{4}
Add \frac{9}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}