Solve for x (complex solution)
x=3+i
x=3-i
Graph
Share
Copied to clipboard
24x-4x^{2}=40
Use the distributive property to multiply 2x by 12-2x.
24x-4x^{2}-40=0
Subtract 40 from both sides.
-4x^{2}+24x-40=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-24±\sqrt{24^{2}-4\left(-4\right)\left(-40\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 24 for b, and -40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\left(-4\right)\left(-40\right)}}{2\left(-4\right)}
Square 24.
x=\frac{-24±\sqrt{576+16\left(-40\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-24±\sqrt{576-640}}{2\left(-4\right)}
Multiply 16 times -40.
x=\frac{-24±\sqrt{-64}}{2\left(-4\right)}
Add 576 to -640.
x=\frac{-24±8i}{2\left(-4\right)}
Take the square root of -64.
x=\frac{-24±8i}{-8}
Multiply 2 times -4.
x=\frac{-24+8i}{-8}
Now solve the equation x=\frac{-24±8i}{-8} when ± is plus. Add -24 to 8i.
x=3-i
Divide -24+8i by -8.
x=\frac{-24-8i}{-8}
Now solve the equation x=\frac{-24±8i}{-8} when ± is minus. Subtract 8i from -24.
x=3+i
Divide -24-8i by -8.
x=3-i x=3+i
The equation is now solved.
24x-4x^{2}=40
Use the distributive property to multiply 2x by 12-2x.
-4x^{2}+24x=40
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+24x}{-4}=\frac{40}{-4}
Divide both sides by -4.
x^{2}+\frac{24}{-4}x=\frac{40}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-6x=\frac{40}{-4}
Divide 24 by -4.
x^{2}-6x=-10
Divide 40 by -4.
x^{2}-6x+\left(-3\right)^{2}=-10+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-10+9
Square -3.
x^{2}-6x+9=-1
Add -10 to 9.
\left(x-3\right)^{2}=-1
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-1}
Take the square root of both sides of the equation.
x-3=i x-3=-i
Simplify.
x=3+i x=3-i
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}