Evaluate
\frac{18x^{2}}{5}-\frac{18x}{5}+\frac{1}{2}
Expand
\frac{18x^{2}}{5}-\frac{18x}{5}+\frac{1}{2}
Graph
Share
Copied to clipboard
2x\times \frac{3}{5}x+2x\left(-\frac{1}{2}\right)+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Use the distributive property to multiply 2x by \frac{3}{5}x-\frac{1}{2}.
2x^{2}\times \frac{3}{5}+2x\left(-\frac{1}{2}\right)+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\frac{2\times 3}{5}x^{2}+2x\left(-\frac{1}{2}\right)+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Express 2\times \frac{3}{5} as a single fraction.
\frac{6}{5}x^{2}+2x\left(-\frac{1}{2}\right)+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply 2 and 3 to get 6.
\frac{6}{5}x^{2}-x+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Cancel out 2 and 2.
\frac{6}{5}x^{2}-x+4x\times \frac{3}{5}x+4x\left(-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Use the distributive property to multiply 4x by \frac{3}{5}x-\frac{1}{2}.
\frac{6}{5}x^{2}-x+4x^{2}\times \frac{3}{5}+4x\left(-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\frac{6}{5}x^{2}-x+\frac{4\times 3}{5}x^{2}+4x\left(-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Express 4\times \frac{3}{5} as a single fraction.
\frac{6}{5}x^{2}-x+\frac{12}{5}x^{2}+4x\left(-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply 4 and 3 to get 12.
\frac{6}{5}x^{2}-x+\frac{12}{5}x^{2}+\frac{4\left(-1\right)}{2}x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Express 4\left(-\frac{1}{2}\right) as a single fraction.
\frac{6}{5}x^{2}-x+\frac{12}{5}x^{2}+\frac{-4}{2}x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply 4 and -1 to get -4.
\frac{6}{5}x^{2}-x+\frac{12}{5}x^{2}-2x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Divide -4 by 2 to get -2.
\frac{18}{5}x^{2}-x-2x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Combine \frac{6}{5}x^{2} and \frac{12}{5}x^{2} to get \frac{18}{5}x^{2}.
\frac{18}{5}x^{2}-3x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Combine -x and -2x to get -3x.
\frac{18}{5}x^{2}-3x-\frac{3}{5}x-\left(-\frac{1}{2}\right)
To find the opposite of \frac{3}{5}x-\frac{1}{2}, find the opposite of each term.
\frac{18}{5}x^{2}-3x-\frac{3}{5}x+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{18}{5}x^{2}-\frac{18}{5}x+\frac{1}{2}
Combine -3x and -\frac{3}{5}x to get -\frac{18}{5}x.
2x\times \frac{3}{5}x+2x\left(-\frac{1}{2}\right)+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Use the distributive property to multiply 2x by \frac{3}{5}x-\frac{1}{2}.
2x^{2}\times \frac{3}{5}+2x\left(-\frac{1}{2}\right)+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\frac{2\times 3}{5}x^{2}+2x\left(-\frac{1}{2}\right)+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Express 2\times \frac{3}{5} as a single fraction.
\frac{6}{5}x^{2}+2x\left(-\frac{1}{2}\right)+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply 2 and 3 to get 6.
\frac{6}{5}x^{2}-x+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Cancel out 2 and 2.
\frac{6}{5}x^{2}-x+4x\times \frac{3}{5}x+4x\left(-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Use the distributive property to multiply 4x by \frac{3}{5}x-\frac{1}{2}.
\frac{6}{5}x^{2}-x+4x^{2}\times \frac{3}{5}+4x\left(-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\frac{6}{5}x^{2}-x+\frac{4\times 3}{5}x^{2}+4x\left(-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Express 4\times \frac{3}{5} as a single fraction.
\frac{6}{5}x^{2}-x+\frac{12}{5}x^{2}+4x\left(-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply 4 and 3 to get 12.
\frac{6}{5}x^{2}-x+\frac{12}{5}x^{2}+\frac{4\left(-1\right)}{2}x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Express 4\left(-\frac{1}{2}\right) as a single fraction.
\frac{6}{5}x^{2}-x+\frac{12}{5}x^{2}+\frac{-4}{2}x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply 4 and -1 to get -4.
\frac{6}{5}x^{2}-x+\frac{12}{5}x^{2}-2x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Divide -4 by 2 to get -2.
\frac{18}{5}x^{2}-x-2x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Combine \frac{6}{5}x^{2} and \frac{12}{5}x^{2} to get \frac{18}{5}x^{2}.
\frac{18}{5}x^{2}-3x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Combine -x and -2x to get -3x.
\frac{18}{5}x^{2}-3x-\frac{3}{5}x-\left(-\frac{1}{2}\right)
To find the opposite of \frac{3}{5}x-\frac{1}{2}, find the opposite of each term.
\frac{18}{5}x^{2}-3x-\frac{3}{5}x+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{18}{5}x^{2}-\frac{18}{5}x+\frac{1}{2}
Combine -3x and -\frac{3}{5}x to get -\frac{18}{5}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}