Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x\times \frac{3}{5}x+2x\left(-\frac{1}{2}\right)+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Use the distributive property to multiply 2x by \frac{3}{5}x-\frac{1}{2}.
2x^{2}\times \frac{3}{5}+2x\left(-\frac{1}{2}\right)+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\frac{2\times 3}{5}x^{2}+2x\left(-\frac{1}{2}\right)+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Express 2\times \frac{3}{5} as a single fraction.
\frac{6}{5}x^{2}+2x\left(-\frac{1}{2}\right)+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply 2 and 3 to get 6.
\frac{6}{5}x^{2}-x+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Cancel out 2 and 2.
\frac{6}{5}x^{2}-x+4x\times \frac{3}{5}x+4x\left(-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Use the distributive property to multiply 4x by \frac{3}{5}x-\frac{1}{2}.
\frac{6}{5}x^{2}-x+4x^{2}\times \frac{3}{5}+4x\left(-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\frac{6}{5}x^{2}-x+\frac{4\times 3}{5}x^{2}+4x\left(-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Express 4\times \frac{3}{5} as a single fraction.
\frac{6}{5}x^{2}-x+\frac{12}{5}x^{2}+4x\left(-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply 4 and 3 to get 12.
\frac{6}{5}x^{2}-x+\frac{12}{5}x^{2}+\frac{4\left(-1\right)}{2}x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Express 4\left(-\frac{1}{2}\right) as a single fraction.
\frac{6}{5}x^{2}-x+\frac{12}{5}x^{2}+\frac{-4}{2}x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply 4 and -1 to get -4.
\frac{6}{5}x^{2}-x+\frac{12}{5}x^{2}-2x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Divide -4 by 2 to get -2.
\frac{18}{5}x^{2}-x-2x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Combine \frac{6}{5}x^{2} and \frac{12}{5}x^{2} to get \frac{18}{5}x^{2}.
\frac{18}{5}x^{2}-3x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Combine -x and -2x to get -3x.
\frac{18}{5}x^{2}-3x-\frac{3}{5}x-\left(-\frac{1}{2}\right)
To find the opposite of \frac{3}{5}x-\frac{1}{2}, find the opposite of each term.
\frac{18}{5}x^{2}-3x-\frac{3}{5}x+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{18}{5}x^{2}-\frac{18}{5}x+\frac{1}{2}
Combine -3x and -\frac{3}{5}x to get -\frac{18}{5}x.
2x\times \frac{3}{5}x+2x\left(-\frac{1}{2}\right)+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Use the distributive property to multiply 2x by \frac{3}{5}x-\frac{1}{2}.
2x^{2}\times \frac{3}{5}+2x\left(-\frac{1}{2}\right)+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\frac{2\times 3}{5}x^{2}+2x\left(-\frac{1}{2}\right)+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Express 2\times \frac{3}{5} as a single fraction.
\frac{6}{5}x^{2}+2x\left(-\frac{1}{2}\right)+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply 2 and 3 to get 6.
\frac{6}{5}x^{2}-x+4x\left(\frac{3}{5}x-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Cancel out 2 and 2.
\frac{6}{5}x^{2}-x+4x\times \frac{3}{5}x+4x\left(-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Use the distributive property to multiply 4x by \frac{3}{5}x-\frac{1}{2}.
\frac{6}{5}x^{2}-x+4x^{2}\times \frac{3}{5}+4x\left(-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply x and x to get x^{2}.
\frac{6}{5}x^{2}-x+\frac{4\times 3}{5}x^{2}+4x\left(-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Express 4\times \frac{3}{5} as a single fraction.
\frac{6}{5}x^{2}-x+\frac{12}{5}x^{2}+4x\left(-\frac{1}{2}\right)-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply 4 and 3 to get 12.
\frac{6}{5}x^{2}-x+\frac{12}{5}x^{2}+\frac{4\left(-1\right)}{2}x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Express 4\left(-\frac{1}{2}\right) as a single fraction.
\frac{6}{5}x^{2}-x+\frac{12}{5}x^{2}+\frac{-4}{2}x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Multiply 4 and -1 to get -4.
\frac{6}{5}x^{2}-x+\frac{12}{5}x^{2}-2x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Divide -4 by 2 to get -2.
\frac{18}{5}x^{2}-x-2x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Combine \frac{6}{5}x^{2} and \frac{12}{5}x^{2} to get \frac{18}{5}x^{2}.
\frac{18}{5}x^{2}-3x-\left(\frac{3}{5}x-\frac{1}{2}\right)
Combine -x and -2x to get -3x.
\frac{18}{5}x^{2}-3x-\frac{3}{5}x-\left(-\frac{1}{2}\right)
To find the opposite of \frac{3}{5}x-\frac{1}{2}, find the opposite of each term.
\frac{18}{5}x^{2}-3x-\frac{3}{5}x+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{18}{5}x^{2}-\frac{18}{5}x+\frac{1}{2}
Combine -3x and -\frac{3}{5}x to get -\frac{18}{5}x.