Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+2x=\sqrt{x^{2}-3x}
Subtract -2x from both sides of the equation.
4x=\sqrt{x^{2}-3x}
Combine 2x and 2x to get 4x.
\left(4x\right)^{2}=\left(\sqrt{x^{2}-3x}\right)^{2}
Square both sides of the equation.
4^{2}x^{2}=\left(\sqrt{x^{2}-3x}\right)^{2}
Expand \left(4x\right)^{2}.
16x^{2}=\left(\sqrt{x^{2}-3x}\right)^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}=x^{2}-3x
Calculate \sqrt{x^{2}-3x} to the power of 2 and get x^{2}-3x.
16x^{2}-x^{2}=-3x
Subtract x^{2} from both sides.
15x^{2}=-3x
Combine 16x^{2} and -x^{2} to get 15x^{2}.
15x^{2}+3x=0
Add 3x to both sides.
x\left(15x+3\right)=0
Factor out x.
x=0 x=-\frac{1}{5}
To find equation solutions, solve x=0 and 15x+3=0.
2\times 0=-2\times 0+\sqrt{0^{2}-3\times 0}
Substitute 0 for x in the equation 2x=-2x+\sqrt{x^{2}-3x}.
0=0
Simplify. The value x=0 satisfies the equation.
2\left(-\frac{1}{5}\right)=-2\left(-\frac{1}{5}\right)+\sqrt{\left(-\frac{1}{5}\right)^{2}-3\left(-\frac{1}{5}\right)}
Substitute -\frac{1}{5} for x in the equation 2x=-2x+\sqrt{x^{2}-3x}.
-\frac{2}{5}=\frac{6}{5}
Simplify. The value x=-\frac{1}{5} does not satisfy the equation because the left and the right hand side have opposite signs.
x=0
Equation 4x=\sqrt{x^{2}-3x} has a unique solution.