Solve for x
x=-\frac{1}{x_{3}+8}
x_{3}\neq -8
Solve for x_3
x_{3}=-8-\frac{1}{x}
x\neq 0
Graph
Share
Copied to clipboard
2x+x_{3}x+9+6x=8
Add 6x to both sides.
8x+x_{3}x+9=8
Combine 2x and 6x to get 8x.
8x+x_{3}x=8-9
Subtract 9 from both sides.
8x+x_{3}x=-1
Subtract 9 from 8 to get -1.
\left(8+x_{3}\right)x=-1
Combine all terms containing x.
\left(x_{3}+8\right)x=-1
The equation is in standard form.
\frac{\left(x_{3}+8\right)x}{x_{3}+8}=-\frac{1}{x_{3}+8}
Divide both sides by x_{3}+8.
x=-\frac{1}{x_{3}+8}
Dividing by x_{3}+8 undoes the multiplication by x_{3}+8.
x_{3}x+9=8-6x-2x
Subtract 2x from both sides.
x_{3}x+9=8-8x
Combine -6x and -2x to get -8x.
x_{3}x=8-8x-9
Subtract 9 from both sides.
x_{3}x=-1-8x
Subtract 9 from 8 to get -1.
xx_{3}=-8x-1
The equation is in standard form.
\frac{xx_{3}}{x}=\frac{-8x-1}{x}
Divide both sides by x.
x_{3}=\frac{-8x-1}{x}
Dividing by x undoes the multiplication by x.
x_{3}=-8-\frac{1}{x}
Divide -1-8x by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}