Solve for x
\left\{\begin{matrix}x=-\frac{3y-4z-145}{y+2}\text{, }&y\neq -2\\x\in \mathrm{R}\text{, }&y=-2\text{ and }z=-\frac{151}{4}\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-\frac{2x-4z-145}{x+3}\text{, }&x\neq -3\\y\in \mathrm{R}\text{, }&x=-3\text{ and }z=-\frac{151}{4}\end{matrix}\right.
Share
Copied to clipboard
2x+3y-4z+xy=145
Add xy to both sides.
2x-4z+xy=145-3y
Subtract 3y from both sides.
2x+xy=145-3y+4z
Add 4z to both sides.
\left(2+y\right)x=145-3y+4z
Combine all terms containing x.
\left(y+2\right)x=145+4z-3y
The equation is in standard form.
\frac{\left(y+2\right)x}{y+2}=\frac{145+4z-3y}{y+2}
Divide both sides by y+2.
x=\frac{145+4z-3y}{y+2}
Dividing by y+2 undoes the multiplication by y+2.
2x+3y-4z+xy=145
Add xy to both sides.
3y-4z+xy=145-2x
Subtract 2x from both sides.
3y+xy=145-2x+4z
Add 4z to both sides.
\left(3+x\right)y=145-2x+4z
Combine all terms containing y.
\left(x+3\right)y=145+4z-2x
The equation is in standard form.
\frac{\left(x+3\right)y}{x+3}=\frac{145+4z-2x}{x+3}
Divide both sides by 3+x.
y=\frac{145+4z-2x}{x+3}
Dividing by 3+x undoes the multiplication by 3+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}