Solve for x
\left\{\begin{matrix}x=-\frac{3y+4z-42806}{2\left(1-15y\right)}\text{, }&y\neq \frac{1}{15}\\x\in \mathrm{R}\text{, }&y=\frac{1}{15}\text{ and }z=\frac{214029}{20}\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-\frac{2\left(x+2z-21403\right)}{3\left(1-10x\right)}\text{, }&x\neq \frac{1}{10}\\y\in \mathrm{R}\text{, }&x=\frac{1}{10}\text{ and }z=\frac{214029}{20}\end{matrix}\right.
Share
Copied to clipboard
2x+3y+4z-30xy=42806
Multiply 6 and 5 to get 30.
2x+4z-30xy=42806-3y
Subtract 3y from both sides.
2x-30xy=42806-3y-4z
Subtract 4z from both sides.
\left(2-30y\right)x=42806-3y-4z
Combine all terms containing x.
\left(2-30y\right)x=42806-4z-3y
The equation is in standard form.
\frac{\left(2-30y\right)x}{2-30y}=\frac{42806-4z-3y}{2-30y}
Divide both sides by 2-30y.
x=\frac{42806-4z-3y}{2-30y}
Dividing by 2-30y undoes the multiplication by 2-30y.
x=\frac{42806-4z-3y}{2\left(1-15y\right)}
Divide 42806-3y-4z by 2-30y.
2x+3y+4z-30xy=42806
Multiply 6 and 5 to get 30.
3y+4z-30xy=42806-2x
Subtract 2x from both sides.
3y-30xy=42806-2x-4z
Subtract 4z from both sides.
\left(3-30x\right)y=42806-2x-4z
Combine all terms containing y.
\left(3-30x\right)y=42806-4z-2x
The equation is in standard form.
\frac{\left(3-30x\right)y}{3-30x}=\frac{42806-4z-2x}{3-30x}
Divide both sides by 3-30x.
y=\frac{42806-4z-2x}{3-30x}
Dividing by 3-30x undoes the multiplication by 3-30x.
y=\frac{2\left(21403-2z-x\right)}{3\left(1-10x\right)}
Divide 42806-2x-4z by 3-30x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}