Solve for x
x=-5
Graph
Share
Copied to clipboard
2x+2\lfloor 2+\frac{4}{5}\rfloor +6=0
Dividing 14 by 5 gives 2 and remainder 4. Rewrite \frac{14}{5} as 2+\frac{4}{5}.
2x+2\times 2+6=0
The floor of a real number a is the largest integer number less than or equal to a. The floor of 2+\frac{4}{5} is 2.
2x+4+6=0
Multiply 2 and 2 to get 4.
2x+10=0
Add 4 and 6 to get 10.
2x=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-10}{2}
Divide both sides by 2.
x=-5
Divide -10 by 2 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}