Solve for x
x=\frac{z+1}{2}
Solve for z
z=2x-1
Share
Copied to clipboard
2x+1-4x=-z
Subtract 4x from both sides.
-2x+1=-z
Combine 2x and -4x to get -2x.
-2x=-z-1
Subtract 1 from both sides.
\frac{-2x}{-2}=\frac{-z-1}{-2}
Divide both sides by -2.
x=\frac{-z-1}{-2}
Dividing by -2 undoes the multiplication by -2.
x=\frac{z+1}{2}
Divide -z-1 by -2.
4x-z=2x+1
Swap sides so that all variable terms are on the left hand side.
-z=2x+1-4x
Subtract 4x from both sides.
-z=-2x+1
Combine 2x and -4x to get -2x.
-z=1-2x
The equation is in standard form.
\frac{-z}{-1}=\frac{1-2x}{-1}
Divide both sides by -1.
z=\frac{1-2x}{-1}
Dividing by -1 undoes the multiplication by -1.
z=2x-1
Divide -2x+1 by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}