Solve for x
x = \frac{2105 - \sqrt{4209}}{8} \approx 255.015399208
Graph
Share
Copied to clipboard
\sqrt{x}=526-2x
Subtract 2x from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(526-2x\right)^{2}
Square both sides of the equation.
x=\left(526-2x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=276676-2104x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(526-2x\right)^{2}.
x-276676=-2104x+4x^{2}
Subtract 276676 from both sides.
x-276676+2104x=4x^{2}
Add 2104x to both sides.
2105x-276676=4x^{2}
Combine x and 2104x to get 2105x.
2105x-276676-4x^{2}=0
Subtract 4x^{2} from both sides.
-4x^{2}+2105x-276676=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2105±\sqrt{2105^{2}-4\left(-4\right)\left(-276676\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 2105 for b, and -276676 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2105±\sqrt{4431025-4\left(-4\right)\left(-276676\right)}}{2\left(-4\right)}
Square 2105.
x=\frac{-2105±\sqrt{4431025+16\left(-276676\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-2105±\sqrt{4431025-4426816}}{2\left(-4\right)}
Multiply 16 times -276676.
x=\frac{-2105±\sqrt{4209}}{2\left(-4\right)}
Add 4431025 to -4426816.
x=\frac{-2105±\sqrt{4209}}{-8}
Multiply 2 times -4.
x=\frac{\sqrt{4209}-2105}{-8}
Now solve the equation x=\frac{-2105±\sqrt{4209}}{-8} when ± is plus. Add -2105 to \sqrt{4209}.
x=\frac{2105-\sqrt{4209}}{8}
Divide -2105+\sqrt{4209} by -8.
x=\frac{-\sqrt{4209}-2105}{-8}
Now solve the equation x=\frac{-2105±\sqrt{4209}}{-8} when ± is minus. Subtract \sqrt{4209} from -2105.
x=\frac{\sqrt{4209}+2105}{8}
Divide -2105-\sqrt{4209} by -8.
x=\frac{2105-\sqrt{4209}}{8} x=\frac{\sqrt{4209}+2105}{8}
The equation is now solved.
2\times \frac{2105-\sqrt{4209}}{8}+\sqrt{\frac{2105-\sqrt{4209}}{8}}=526
Substitute \frac{2105-\sqrt{4209}}{8} for x in the equation 2x+\sqrt{x}=526.
526=526
Simplify. The value x=\frac{2105-\sqrt{4209}}{8} satisfies the equation.
2\times \frac{\sqrt{4209}+2105}{8}+\sqrt{\frac{\sqrt{4209}+2105}{8}}=526
Substitute \frac{\sqrt{4209}+2105}{8} for x in the equation 2x+\sqrt{x}=526.
\frac{1}{2}\times 4209^{\frac{1}{2}}+\frac{1053}{2}=526
Simplify. The value x=\frac{\sqrt{4209}+2105}{8} does not satisfy the equation.
x=\frac{2105-\sqrt{4209}}{8}
Equation \sqrt{x}=526-2x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}