Solve for x
x = \frac{7}{6} = 1\frac{1}{6} \approx 1.166666667
x=0
Graph
Share
Copied to clipboard
2x^{2}\times 6=14x
Multiply x and x to get x^{2}.
12x^{2}=14x
Multiply 2 and 6 to get 12.
12x^{2}-14x=0
Subtract 14x from both sides.
x\left(12x-14\right)=0
Factor out x.
x=0 x=\frac{7}{6}
To find equation solutions, solve x=0 and 12x-14=0.
2x^{2}\times 6=14x
Multiply x and x to get x^{2}.
12x^{2}=14x
Multiply 2 and 6 to get 12.
12x^{2}-14x=0
Subtract 14x from both sides.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -14 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±14}{2\times 12}
Take the square root of \left(-14\right)^{2}.
x=\frac{14±14}{2\times 12}
The opposite of -14 is 14.
x=\frac{14±14}{24}
Multiply 2 times 12.
x=\frac{28}{24}
Now solve the equation x=\frac{14±14}{24} when ± is plus. Add 14 to 14.
x=\frac{7}{6}
Reduce the fraction \frac{28}{24} to lowest terms by extracting and canceling out 4.
x=\frac{0}{24}
Now solve the equation x=\frac{14±14}{24} when ± is minus. Subtract 14 from 14.
x=0
Divide 0 by 24.
x=\frac{7}{6} x=0
The equation is now solved.
2x^{2}\times 6=14x
Multiply x and x to get x^{2}.
12x^{2}=14x
Multiply 2 and 6 to get 12.
12x^{2}-14x=0
Subtract 14x from both sides.
\frac{12x^{2}-14x}{12}=\frac{0}{12}
Divide both sides by 12.
x^{2}+\left(-\frac{14}{12}\right)x=\frac{0}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{7}{6}x=\frac{0}{12}
Reduce the fraction \frac{-14}{12} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{6}x=0
Divide 0 by 12.
x^{2}-\frac{7}{6}x+\left(-\frac{7}{12}\right)^{2}=\left(-\frac{7}{12}\right)^{2}
Divide -\frac{7}{6}, the coefficient of the x term, by 2 to get -\frac{7}{12}. Then add the square of -\frac{7}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{6}x+\frac{49}{144}=\frac{49}{144}
Square -\frac{7}{12} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{7}{12}\right)^{2}=\frac{49}{144}
Factor x^{2}-\frac{7}{6}x+\frac{49}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{12}\right)^{2}}=\sqrt{\frac{49}{144}}
Take the square root of both sides of the equation.
x-\frac{7}{12}=\frac{7}{12} x-\frac{7}{12}=-\frac{7}{12}
Simplify.
x=\frac{7}{6} x=0
Add \frac{7}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}