Solve for x
x=\frac{\sqrt{2}}{4}\approx 0.353553391
x=-\frac{\sqrt{2}}{4}\approx -0.353553391
Graph
Share
Copied to clipboard
2\times 4x^{2}\sqrt{4}-2=0
Multiply x and x to get x^{2}.
8x^{2}\sqrt{4}-2=0
Multiply 2 and 4 to get 8.
8x^{2}\times 2-2=0
Calculate the square root of 4 and get 2.
16x^{2}-2=0
Multiply 8 and 2 to get 16.
16x^{2}=2
Add 2 to both sides. Anything plus zero gives itself.
x^{2}=\frac{2}{16}
Divide both sides by 16.
x^{2}=\frac{1}{8}
Reduce the fraction \frac{2}{16} to lowest terms by extracting and canceling out 2.
x=\frac{\sqrt{2}}{4} x=-\frac{\sqrt{2}}{4}
Take the square root of both sides of the equation.
2\times 4x^{2}\sqrt{4}-2=0
Multiply x and x to get x^{2}.
8x^{2}\sqrt{4}-2=0
Multiply 2 and 4 to get 8.
8x^{2}\times 2-2=0
Calculate the square root of 4 and get 2.
16x^{2}-2=0
Multiply 8 and 2 to get 16.
x=\frac{0±\sqrt{0^{2}-4\times 16\left(-2\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 0 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 16\left(-2\right)}}{2\times 16}
Square 0.
x=\frac{0±\sqrt{-64\left(-2\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{0±\sqrt{128}}{2\times 16}
Multiply -64 times -2.
x=\frac{0±8\sqrt{2}}{2\times 16}
Take the square root of 128.
x=\frac{0±8\sqrt{2}}{32}
Multiply 2 times 16.
x=\frac{\sqrt{2}}{4}
Now solve the equation x=\frac{0±8\sqrt{2}}{32} when ± is plus.
x=-\frac{\sqrt{2}}{4}
Now solve the equation x=\frac{0±8\sqrt{2}}{32} when ± is minus.
x=\frac{\sqrt{2}}{4} x=-\frac{\sqrt{2}}{4}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}