Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-10x+2=x
Use the distributive property to multiply 2x by x-5.
2x^{2}-10x+2-x=0
Subtract x from both sides.
2x^{2}-11x+2=0
Combine -10x and -x to get -11x.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\times 2}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -11 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 2\times 2}}{2\times 2}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-8\times 2}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-11\right)±\sqrt{121-16}}{2\times 2}
Multiply -8 times 2.
x=\frac{-\left(-11\right)±\sqrt{105}}{2\times 2}
Add 121 to -16.
x=\frac{11±\sqrt{105}}{2\times 2}
The opposite of -11 is 11.
x=\frac{11±\sqrt{105}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{105}+11}{4}
Now solve the equation x=\frac{11±\sqrt{105}}{4} when ± is plus. Add 11 to \sqrt{105}.
x=\frac{11-\sqrt{105}}{4}
Now solve the equation x=\frac{11±\sqrt{105}}{4} when ± is minus. Subtract \sqrt{105} from 11.
x=\frac{\sqrt{105}+11}{4} x=\frac{11-\sqrt{105}}{4}
The equation is now solved.
2x^{2}-10x+2=x
Use the distributive property to multiply 2x by x-5.
2x^{2}-10x+2-x=0
Subtract x from both sides.
2x^{2}-11x+2=0
Combine -10x and -x to get -11x.
2x^{2}-11x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}-11x}{2}=-\frac{2}{2}
Divide both sides by 2.
x^{2}-\frac{11}{2}x=-\frac{2}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{11}{2}x=-1
Divide -2 by 2.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=-1+\left(-\frac{11}{4}\right)^{2}
Divide -\frac{11}{2}, the coefficient of the x term, by 2 to get -\frac{11}{4}. Then add the square of -\frac{11}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{2}x+\frac{121}{16}=-1+\frac{121}{16}
Square -\frac{11}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{105}{16}
Add -1 to \frac{121}{16}.
\left(x-\frac{11}{4}\right)^{2}=\frac{105}{16}
Factor x^{2}-\frac{11}{2}x+\frac{121}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{105}{16}}
Take the square root of both sides of the equation.
x-\frac{11}{4}=\frac{\sqrt{105}}{4} x-\frac{11}{4}=-\frac{\sqrt{105}}{4}
Simplify.
x=\frac{\sqrt{105}+11}{4} x=\frac{11-\sqrt{105}}{4}
Add \frac{11}{4} to both sides of the equation.