Evaluate
\frac{149}{26}\approx 5.730769231
Factor
\frac{149}{2 \cdot 13} = 5\frac{19}{26} = 5.730769230769231
Share
Copied to clipboard
\begin{array}{l}\phantom{52)}\phantom{1}\\52\overline{)298}\\\end{array}
Use the 1^{st} digit 2 from dividend 298
\begin{array}{l}\phantom{52)}0\phantom{2}\\52\overline{)298}\\\end{array}
Since 2 is less than 52, use the next digit 9 from dividend 298 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0\phantom{3}\\52\overline{)298}\\\end{array}
Use the 2^{nd} digit 9 from dividend 298
\begin{array}{l}\phantom{52)}00\phantom{4}\\52\overline{)298}\\\end{array}
Since 29 is less than 52, use the next digit 8 from dividend 298 and add 0 to the quotient
\begin{array}{l}\phantom{52)}00\phantom{5}\\52\overline{)298}\\\end{array}
Use the 3^{rd} digit 8 from dividend 298
\begin{array}{l}\phantom{52)}005\phantom{6}\\52\overline{)298}\\\phantom{52)}\underline{\phantom{}260\phantom{}}\\\phantom{52)9}38\\\end{array}
Find closest multiple of 52 to 298. We see that 5 \times 52 = 260 is the nearest. Now subtract 260 from 298 to get reminder 38. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }38
Since 38 is less than 52, stop the division. The reminder is 38. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}