Evaluate
\frac{149}{10}=14.9
Factor
\frac{149}{2 \cdot 5} = 14\frac{9}{10} = 14.9
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)298}\\\end{array}
Use the 1^{st} digit 2 from dividend 298
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)298}\\\end{array}
Since 2 is less than 20, use the next digit 9 from dividend 298 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)298}\\\end{array}
Use the 2^{nd} digit 9 from dividend 298
\begin{array}{l}\phantom{20)}01\phantom{4}\\20\overline{)298}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)9}9\\\end{array}
Find closest multiple of 20 to 29. We see that 1 \times 20 = 20 is the nearest. Now subtract 20 from 29 to get reminder 9. Add 1 to quotient.
\begin{array}{l}\phantom{20)}01\phantom{5}\\20\overline{)298}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)9}98\\\end{array}
Use the 3^{rd} digit 8 from dividend 298
\begin{array}{l}\phantom{20)}014\phantom{6}\\20\overline{)298}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)9}98\\\phantom{20)}\underline{\phantom{9}80\phantom{}}\\\phantom{20)9}18\\\end{array}
Find closest multiple of 20 to 98. We see that 4 \times 20 = 80 is the nearest. Now subtract 80 from 98 to get reminder 18. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }18
Since 18 is less than 20, stop the division. The reminder is 18. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}