Evaluate
\frac{297}{200}=1.485
Factor
\frac{3 ^ {3} \cdot 11}{2 ^ {3} \cdot 5 ^ {2}} = 1\frac{97}{200} = 1.485
Share
Copied to clipboard
\begin{array}{l}\phantom{200)}\phantom{1}\\200\overline{)297}\\\end{array}
Use the 1^{st} digit 2 from dividend 297
\begin{array}{l}\phantom{200)}0\phantom{2}\\200\overline{)297}\\\end{array}
Since 2 is less than 200, use the next digit 9 from dividend 297 and add 0 to the quotient
\begin{array}{l}\phantom{200)}0\phantom{3}\\200\overline{)297}\\\end{array}
Use the 2^{nd} digit 9 from dividend 297
\begin{array}{l}\phantom{200)}00\phantom{4}\\200\overline{)297}\\\end{array}
Since 29 is less than 200, use the next digit 7 from dividend 297 and add 0 to the quotient
\begin{array}{l}\phantom{200)}00\phantom{5}\\200\overline{)297}\\\end{array}
Use the 3^{rd} digit 7 from dividend 297
\begin{array}{l}\phantom{200)}001\phantom{6}\\200\overline{)297}\\\phantom{200)}\underline{\phantom{}200\phantom{}}\\\phantom{200)9}97\\\end{array}
Find closest multiple of 200 to 297. We see that 1 \times 200 = 200 is the nearest. Now subtract 200 from 297 to get reminder 97. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }97
Since 97 is less than 200, stop the division. The reminder is 97. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}