Evaluate
\frac{296}{59}\approx 5.016949153
Factor
\frac{2 ^ {3} \cdot 37}{59} = 5\frac{1}{59} = 5.016949152542373
Share
Copied to clipboard
\begin{array}{l}\phantom{59)}\phantom{1}\\59\overline{)296}\\\end{array}
Use the 1^{st} digit 2 from dividend 296
\begin{array}{l}\phantom{59)}0\phantom{2}\\59\overline{)296}\\\end{array}
Since 2 is less than 59, use the next digit 9 from dividend 296 and add 0 to the quotient
\begin{array}{l}\phantom{59)}0\phantom{3}\\59\overline{)296}\\\end{array}
Use the 2^{nd} digit 9 from dividend 296
\begin{array}{l}\phantom{59)}00\phantom{4}\\59\overline{)296}\\\end{array}
Since 29 is less than 59, use the next digit 6 from dividend 296 and add 0 to the quotient
\begin{array}{l}\phantom{59)}00\phantom{5}\\59\overline{)296}\\\end{array}
Use the 3^{rd} digit 6 from dividend 296
\begin{array}{l}\phantom{59)}005\phantom{6}\\59\overline{)296}\\\phantom{59)}\underline{\phantom{}295\phantom{}}\\\phantom{59)99}1\\\end{array}
Find closest multiple of 59 to 296. We see that 5 \times 59 = 295 is the nearest. Now subtract 295 from 296 to get reminder 1. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }1
Since 1 is less than 59, stop the division. The reminder is 1. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}