Evaluate
\frac{17}{2}=8.5
Factor
\frac{17}{2} = 8\frac{1}{2} = 8.5
Share
Copied to clipboard
\begin{array}{l}\phantom{348)}\phantom{1}\\348\overline{)2958}\\\end{array}
Use the 1^{st} digit 2 from dividend 2958
\begin{array}{l}\phantom{348)}0\phantom{2}\\348\overline{)2958}\\\end{array}
Since 2 is less than 348, use the next digit 9 from dividend 2958 and add 0 to the quotient
\begin{array}{l}\phantom{348)}0\phantom{3}\\348\overline{)2958}\\\end{array}
Use the 2^{nd} digit 9 from dividend 2958
\begin{array}{l}\phantom{348)}00\phantom{4}\\348\overline{)2958}\\\end{array}
Since 29 is less than 348, use the next digit 5 from dividend 2958 and add 0 to the quotient
\begin{array}{l}\phantom{348)}00\phantom{5}\\348\overline{)2958}\\\end{array}
Use the 3^{rd} digit 5 from dividend 2958
\begin{array}{l}\phantom{348)}000\phantom{6}\\348\overline{)2958}\\\end{array}
Since 295 is less than 348, use the next digit 8 from dividend 2958 and add 0 to the quotient
\begin{array}{l}\phantom{348)}000\phantom{7}\\348\overline{)2958}\\\end{array}
Use the 4^{th} digit 8 from dividend 2958
\begin{array}{l}\phantom{348)}0008\phantom{8}\\348\overline{)2958}\\\phantom{348)}\underline{\phantom{}2784\phantom{}}\\\phantom{348)9}174\\\end{array}
Find closest multiple of 348 to 2958. We see that 8 \times 348 = 2784 is the nearest. Now subtract 2784 from 2958 to get reminder 174. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }174
Since 174 is less than 348, stop the division. The reminder is 174. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}