Solve for x
x = \frac{9 \sqrt{3709641} + 1911}{14750} \approx 1.304771899
x=\frac{1911-9\sqrt{3709641}}{14750}\approx -1.045653255
Graph
Share
Copied to clipboard
29500x^{2}-7644x=40248
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
29500x^{2}-7644x-40248=40248-40248
Subtract 40248 from both sides of the equation.
29500x^{2}-7644x-40248=0
Subtracting 40248 from itself leaves 0.
x=\frac{-\left(-7644\right)±\sqrt{\left(-7644\right)^{2}-4\times 29500\left(-40248\right)}}{2\times 29500}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 29500 for a, -7644 for b, and -40248 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7644\right)±\sqrt{58430736-4\times 29500\left(-40248\right)}}{2\times 29500}
Square -7644.
x=\frac{-\left(-7644\right)±\sqrt{58430736-118000\left(-40248\right)}}{2\times 29500}
Multiply -4 times 29500.
x=\frac{-\left(-7644\right)±\sqrt{58430736+4749264000}}{2\times 29500}
Multiply -118000 times -40248.
x=\frac{-\left(-7644\right)±\sqrt{4807694736}}{2\times 29500}
Add 58430736 to 4749264000.
x=\frac{-\left(-7644\right)±36\sqrt{3709641}}{2\times 29500}
Take the square root of 4807694736.
x=\frac{7644±36\sqrt{3709641}}{2\times 29500}
The opposite of -7644 is 7644.
x=\frac{7644±36\sqrt{3709641}}{59000}
Multiply 2 times 29500.
x=\frac{36\sqrt{3709641}+7644}{59000}
Now solve the equation x=\frac{7644±36\sqrt{3709641}}{59000} when ± is plus. Add 7644 to 36\sqrt{3709641}.
x=\frac{9\sqrt{3709641}+1911}{14750}
Divide 7644+36\sqrt{3709641} by 59000.
x=\frac{7644-36\sqrt{3709641}}{59000}
Now solve the equation x=\frac{7644±36\sqrt{3709641}}{59000} when ± is minus. Subtract 36\sqrt{3709641} from 7644.
x=\frac{1911-9\sqrt{3709641}}{14750}
Divide 7644-36\sqrt{3709641} by 59000.
x=\frac{9\sqrt{3709641}+1911}{14750} x=\frac{1911-9\sqrt{3709641}}{14750}
The equation is now solved.
29500x^{2}-7644x=40248
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{29500x^{2}-7644x}{29500}=\frac{40248}{29500}
Divide both sides by 29500.
x^{2}+\left(-\frac{7644}{29500}\right)x=\frac{40248}{29500}
Dividing by 29500 undoes the multiplication by 29500.
x^{2}-\frac{1911}{7375}x=\frac{40248}{29500}
Reduce the fraction \frac{-7644}{29500} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{1911}{7375}x=\frac{10062}{7375}
Reduce the fraction \frac{40248}{29500} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{1911}{7375}x+\left(-\frac{1911}{14750}\right)^{2}=\frac{10062}{7375}+\left(-\frac{1911}{14750}\right)^{2}
Divide -\frac{1911}{7375}, the coefficient of the x term, by 2 to get -\frac{1911}{14750}. Then add the square of -\frac{1911}{14750} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1911}{7375}x+\frac{3651921}{217562500}=\frac{10062}{7375}+\frac{3651921}{217562500}
Square -\frac{1911}{14750} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1911}{7375}x+\frac{3651921}{217562500}=\frac{300480921}{217562500}
Add \frac{10062}{7375} to \frac{3651921}{217562500} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1911}{14750}\right)^{2}=\frac{300480921}{217562500}
Factor x^{2}-\frac{1911}{7375}x+\frac{3651921}{217562500}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1911}{14750}\right)^{2}}=\sqrt{\frac{300480921}{217562500}}
Take the square root of both sides of the equation.
x-\frac{1911}{14750}=\frac{9\sqrt{3709641}}{14750} x-\frac{1911}{14750}=-\frac{9\sqrt{3709641}}{14750}
Simplify.
x=\frac{9\sqrt{3709641}+1911}{14750} x=\frac{1911-9\sqrt{3709641}}{14750}
Add \frac{1911}{14750} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}