Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

29500x^{2}-764.4x=4024.8
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
29500x^{2}-764.4x-4024.8=4024.8-4024.8
Subtract 4024.8 from both sides of the equation.
29500x^{2}-764.4x-4024.8=0
Subtracting 4024.8 from itself leaves 0.
x=\frac{-\left(-764.4\right)±\sqrt{\left(-764.4\right)^{2}-4\times 29500\left(-4024.8\right)}}{2\times 29500}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 29500 for a, -764.4 for b, and -4024.8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-764.4\right)±\sqrt{584307.36-4\times 29500\left(-4024.8\right)}}{2\times 29500}
Square -764.4 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-764.4\right)±\sqrt{584307.36-118000\left(-4024.8\right)}}{2\times 29500}
Multiply -4 times 29500.
x=\frac{-\left(-764.4\right)±\sqrt{584307.36+474926400}}{2\times 29500}
Multiply -118000 times -4024.8.
x=\frac{-\left(-764.4\right)±\sqrt{475510707.36}}{2\times 29500}
Add 584307.36 to 474926400.
x=\frac{-\left(-764.4\right)±\frac{18\sqrt{36690641}}{5}}{2\times 29500}
Take the square root of 475510707.36.
x=\frac{764.4±\frac{18\sqrt{36690641}}{5}}{2\times 29500}
The opposite of -764.4 is 764.4.
x=\frac{764.4±\frac{18\sqrt{36690641}}{5}}{59000}
Multiply 2 times 29500.
x=\frac{18\sqrt{36690641}+3822}{5\times 59000}
Now solve the equation x=\frac{764.4±\frac{18\sqrt{36690641}}{5}}{59000} when ± is plus. Add 764.4 to \frac{18\sqrt{36690641}}{5}.
x=\frac{9\sqrt{36690641}+1911}{147500}
Divide \frac{3822+18\sqrt{36690641}}{5} by 59000.
x=\frac{3822-18\sqrt{36690641}}{5\times 59000}
Now solve the equation x=\frac{764.4±\frac{18\sqrt{36690641}}{5}}{59000} when ± is minus. Subtract \frac{18\sqrt{36690641}}{5} from 764.4.
x=\frac{1911-9\sqrt{36690641}}{147500}
Divide \frac{3822-18\sqrt{36690641}}{5} by 59000.
x=\frac{9\sqrt{36690641}+1911}{147500} x=\frac{1911-9\sqrt{36690641}}{147500}
The equation is now solved.
29500x^{2}-764.4x=4024.8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{29500x^{2}-764.4x}{29500}=\frac{4024.8}{29500}
Divide both sides by 29500.
x^{2}+\left(-\frac{764.4}{29500}\right)x=\frac{4024.8}{29500}
Dividing by 29500 undoes the multiplication by 29500.
x^{2}-\frac{1911}{73750}x=\frac{4024.8}{29500}
Divide -764.4 by 29500.
x^{2}-\frac{1911}{73750}x=\frac{5031}{36875}
Divide 4024.8 by 29500.
x^{2}-\frac{1911}{73750}x+\left(-\frac{1911}{147500}\right)^{2}=\frac{5031}{36875}+\left(-\frac{1911}{147500}\right)^{2}
Divide -\frac{1911}{73750}, the coefficient of the x term, by 2 to get -\frac{1911}{147500}. Then add the square of -\frac{1911}{147500} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1911}{73750}x+\frac{3651921}{21756250000}=\frac{5031}{36875}+\frac{3651921}{21756250000}
Square -\frac{1911}{147500} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1911}{73750}x+\frac{3651921}{21756250000}=\frac{2971941921}{21756250000}
Add \frac{5031}{36875} to \frac{3651921}{21756250000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1911}{147500}\right)^{2}=\frac{2971941921}{21756250000}
Factor x^{2}-\frac{1911}{73750}x+\frac{3651921}{21756250000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1911}{147500}\right)^{2}}=\sqrt{\frac{2971941921}{21756250000}}
Take the square root of both sides of the equation.
x-\frac{1911}{147500}=\frac{9\sqrt{36690641}}{147500} x-\frac{1911}{147500}=-\frac{9\sqrt{36690641}}{147500}
Simplify.
x=\frac{9\sqrt{36690641}+1911}{147500} x=\frac{1911-9\sqrt{36690641}}{147500}
Add \frac{1911}{147500} to both sides of the equation.