Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\frac{2496}{29500}
Divide both sides by 29500.
x^{2}=\frac{624}{7375}
Reduce the fraction \frac{2496}{29500} to lowest terms by extracting and canceling out 4.
x=\frac{4\sqrt{11505}}{1475} x=-\frac{4\sqrt{11505}}{1475}
Take the square root of both sides of the equation.
x^{2}=\frac{2496}{29500}
Divide both sides by 29500.
x^{2}=\frac{624}{7375}
Reduce the fraction \frac{2496}{29500} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{624}{7375}=0
Subtract \frac{624}{7375} from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{624}{7375}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{624}{7375} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{624}{7375}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{2496}{7375}}}{2}
Multiply -4 times -\frac{624}{7375}.
x=\frac{0±\frac{8\sqrt{11505}}{1475}}{2}
Take the square root of \frac{2496}{7375}.
x=\frac{4\sqrt{11505}}{1475}
Now solve the equation x=\frac{0±\frac{8\sqrt{11505}}{1475}}{2} when ± is plus.
x=-\frac{4\sqrt{11505}}{1475}
Now solve the equation x=\frac{0±\frac{8\sqrt{11505}}{1475}}{2} when ± is minus.
x=\frac{4\sqrt{11505}}{1475} x=-\frac{4\sqrt{11505}}{1475}
The equation is now solved.