Evaluate
5
Factor
5
Share
Copied to clipboard
\begin{array}{l}\phantom{590)}\phantom{1}\\590\overline{)2950}\\\end{array}
Use the 1^{st} digit 2 from dividend 2950
\begin{array}{l}\phantom{590)}0\phantom{2}\\590\overline{)2950}\\\end{array}
Since 2 is less than 590, use the next digit 9 from dividend 2950 and add 0 to the quotient
\begin{array}{l}\phantom{590)}0\phantom{3}\\590\overline{)2950}\\\end{array}
Use the 2^{nd} digit 9 from dividend 2950
\begin{array}{l}\phantom{590)}00\phantom{4}\\590\overline{)2950}\\\end{array}
Since 29 is less than 590, use the next digit 5 from dividend 2950 and add 0 to the quotient
\begin{array}{l}\phantom{590)}00\phantom{5}\\590\overline{)2950}\\\end{array}
Use the 3^{rd} digit 5 from dividend 2950
\begin{array}{l}\phantom{590)}000\phantom{6}\\590\overline{)2950}\\\end{array}
Since 295 is less than 590, use the next digit 0 from dividend 2950 and add 0 to the quotient
\begin{array}{l}\phantom{590)}000\phantom{7}\\590\overline{)2950}\\\end{array}
Use the 4^{th} digit 0 from dividend 2950
\begin{array}{l}\phantom{590)}0005\phantom{8}\\590\overline{)2950}\\\phantom{590)}\underline{\phantom{}2950\phantom{}}\\\phantom{590)9999}0\\\end{array}
Find closest multiple of 590 to 2950. We see that 5 \times 590 = 2950 is the nearest. Now subtract 2950 from 2950 to get reminder 0. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }0
Since 0 is less than 590, stop the division. The reminder is 0. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}