Evaluate
\frac{295}{34}\approx 8.676470588
Factor
\frac{5 \cdot 59}{2 \cdot 17} = 8\frac{23}{34} = 8.676470588235293
Share
Copied to clipboard
\begin{array}{l}\phantom{34)}\phantom{1}\\34\overline{)295}\\\end{array}
Use the 1^{st} digit 2 from dividend 295
\begin{array}{l}\phantom{34)}0\phantom{2}\\34\overline{)295}\\\end{array}
Since 2 is less than 34, use the next digit 9 from dividend 295 and add 0 to the quotient
\begin{array}{l}\phantom{34)}0\phantom{3}\\34\overline{)295}\\\end{array}
Use the 2^{nd} digit 9 from dividend 295
\begin{array}{l}\phantom{34)}00\phantom{4}\\34\overline{)295}\\\end{array}
Since 29 is less than 34, use the next digit 5 from dividend 295 and add 0 to the quotient
\begin{array}{l}\phantom{34)}00\phantom{5}\\34\overline{)295}\\\end{array}
Use the 3^{rd} digit 5 from dividend 295
\begin{array}{l}\phantom{34)}008\phantom{6}\\34\overline{)295}\\\phantom{34)}\underline{\phantom{}272\phantom{}}\\\phantom{34)9}23\\\end{array}
Find closest multiple of 34 to 295. We see that 8 \times 34 = 272 is the nearest. Now subtract 272 from 295 to get reminder 23. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }23
Since 23 is less than 34, stop the division. The reminder is 23. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}