Evaluate
\frac{29483}{26}\approx 1133.961538462
Factor
\frac{29483}{2 \cdot 13} = 1133\frac{25}{26} = 1133.9615384615386
Share
Copied to clipboard
\begin{array}{l}\phantom{26)}\phantom{1}\\26\overline{)29483}\\\end{array}
Use the 1^{st} digit 2 from dividend 29483
\begin{array}{l}\phantom{26)}0\phantom{2}\\26\overline{)29483}\\\end{array}
Since 2 is less than 26, use the next digit 9 from dividend 29483 and add 0 to the quotient
\begin{array}{l}\phantom{26)}0\phantom{3}\\26\overline{)29483}\\\end{array}
Use the 2^{nd} digit 9 from dividend 29483
\begin{array}{l}\phantom{26)}01\phantom{4}\\26\overline{)29483}\\\phantom{26)}\underline{\phantom{}26\phantom{999}}\\\phantom{26)9}3\\\end{array}
Find closest multiple of 26 to 29. We see that 1 \times 26 = 26 is the nearest. Now subtract 26 from 29 to get reminder 3. Add 1 to quotient.
\begin{array}{l}\phantom{26)}01\phantom{5}\\26\overline{)29483}\\\phantom{26)}\underline{\phantom{}26\phantom{999}}\\\phantom{26)9}34\\\end{array}
Use the 3^{rd} digit 4 from dividend 29483
\begin{array}{l}\phantom{26)}011\phantom{6}\\26\overline{)29483}\\\phantom{26)}\underline{\phantom{}26\phantom{999}}\\\phantom{26)9}34\\\phantom{26)}\underline{\phantom{9}26\phantom{99}}\\\phantom{26)99}8\\\end{array}
Find closest multiple of 26 to 34. We see that 1 \times 26 = 26 is the nearest. Now subtract 26 from 34 to get reminder 8. Add 1 to quotient.
\begin{array}{l}\phantom{26)}011\phantom{7}\\26\overline{)29483}\\\phantom{26)}\underline{\phantom{}26\phantom{999}}\\\phantom{26)9}34\\\phantom{26)}\underline{\phantom{9}26\phantom{99}}\\\phantom{26)99}88\\\end{array}
Use the 4^{th} digit 8 from dividend 29483
\begin{array}{l}\phantom{26)}0113\phantom{8}\\26\overline{)29483}\\\phantom{26)}\underline{\phantom{}26\phantom{999}}\\\phantom{26)9}34\\\phantom{26)}\underline{\phantom{9}26\phantom{99}}\\\phantom{26)99}88\\\phantom{26)}\underline{\phantom{99}78\phantom{9}}\\\phantom{26)99}10\\\end{array}
Find closest multiple of 26 to 88. We see that 3 \times 26 = 78 is the nearest. Now subtract 78 from 88 to get reminder 10. Add 3 to quotient.
\begin{array}{l}\phantom{26)}0113\phantom{9}\\26\overline{)29483}\\\phantom{26)}\underline{\phantom{}26\phantom{999}}\\\phantom{26)9}34\\\phantom{26)}\underline{\phantom{9}26\phantom{99}}\\\phantom{26)99}88\\\phantom{26)}\underline{\phantom{99}78\phantom{9}}\\\phantom{26)99}103\\\end{array}
Use the 5^{th} digit 3 from dividend 29483
\begin{array}{l}\phantom{26)}01133\phantom{10}\\26\overline{)29483}\\\phantom{26)}\underline{\phantom{}26\phantom{999}}\\\phantom{26)9}34\\\phantom{26)}\underline{\phantom{9}26\phantom{99}}\\\phantom{26)99}88\\\phantom{26)}\underline{\phantom{99}78\phantom{9}}\\\phantom{26)99}103\\\phantom{26)}\underline{\phantom{999}78\phantom{}}\\\phantom{26)999}25\\\end{array}
Find closest multiple of 26 to 103. We see that 3 \times 26 = 78 is the nearest. Now subtract 78 from 103 to get reminder 25. Add 3 to quotient.
\text{Quotient: }1133 \text{Reminder: }25
Since 25 is less than 26, stop the division. The reminder is 25. The topmost line 01133 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1133.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}