Evaluate
\frac{97231925}{49152}\approx 1978.188578288
Factor
\frac{5 ^ {2} \cdot 7 ^ {3} \cdot 17 \cdot 23 \cdot 29}{2 ^ {14} \cdot 3} = 1978\frac{9269}{49152} = 1978.1885782877605
Share
Copied to clipboard
\begin{array}{l}\phantom{147456)}\phantom{1}\\147456\overline{)291695775}\\\end{array}
Use the 1^{st} digit 2 from dividend 291695775
\begin{array}{l}\phantom{147456)}0\phantom{2}\\147456\overline{)291695775}\\\end{array}
Since 2 is less than 147456, use the next digit 9 from dividend 291695775 and add 0 to the quotient
\begin{array}{l}\phantom{147456)}0\phantom{3}\\147456\overline{)291695775}\\\end{array}
Use the 2^{nd} digit 9 from dividend 291695775
\begin{array}{l}\phantom{147456)}00\phantom{4}\\147456\overline{)291695775}\\\end{array}
Since 29 is less than 147456, use the next digit 1 from dividend 291695775 and add 0 to the quotient
\begin{array}{l}\phantom{147456)}00\phantom{5}\\147456\overline{)291695775}\\\end{array}
Use the 3^{rd} digit 1 from dividend 291695775
\begin{array}{l}\phantom{147456)}000\phantom{6}\\147456\overline{)291695775}\\\end{array}
Since 291 is less than 147456, use the next digit 6 from dividend 291695775 and add 0 to the quotient
\begin{array}{l}\phantom{147456)}000\phantom{7}\\147456\overline{)291695775}\\\end{array}
Use the 4^{th} digit 6 from dividend 291695775
\begin{array}{l}\phantom{147456)}0000\phantom{8}\\147456\overline{)291695775}\\\end{array}
Since 2916 is less than 147456, use the next digit 9 from dividend 291695775 and add 0 to the quotient
\begin{array}{l}\phantom{147456)}0000\phantom{9}\\147456\overline{)291695775}\\\end{array}
Use the 5^{th} digit 9 from dividend 291695775
\begin{array}{l}\phantom{147456)}00000\phantom{10}\\147456\overline{)291695775}\\\end{array}
Since 29169 is less than 147456, use the next digit 5 from dividend 291695775 and add 0 to the quotient
\begin{array}{l}\phantom{147456)}00000\phantom{11}\\147456\overline{)291695775}\\\end{array}
Use the 6^{th} digit 5 from dividend 291695775
\begin{array}{l}\phantom{147456)}000001\phantom{12}\\147456\overline{)291695775}\\\phantom{147456)}\underline{\phantom{}147456\phantom{999}}\\\phantom{147456)}144239\\\end{array}
Find closest multiple of 147456 to 291695. We see that 1 \times 147456 = 147456 is the nearest. Now subtract 147456 from 291695 to get reminder 144239. Add 1 to quotient.
\begin{array}{l}\phantom{147456)}000001\phantom{13}\\147456\overline{)291695775}\\\phantom{147456)}\underline{\phantom{}147456\phantom{999}}\\\phantom{147456)}1442397\\\end{array}
Use the 7^{th} digit 7 from dividend 291695775
\begin{array}{l}\phantom{147456)}0000019\phantom{14}\\147456\overline{)291695775}\\\phantom{147456)}\underline{\phantom{}147456\phantom{999}}\\\phantom{147456)}1442397\\\phantom{147456)}\underline{\phantom{}1327104\phantom{99}}\\\phantom{147456)9}115293\\\end{array}
Find closest multiple of 147456 to 1442397. We see that 9 \times 147456 = 1327104 is the nearest. Now subtract 1327104 from 1442397 to get reminder 115293. Add 9 to quotient.
\begin{array}{l}\phantom{147456)}0000019\phantom{15}\\147456\overline{)291695775}\\\phantom{147456)}\underline{\phantom{}147456\phantom{999}}\\\phantom{147456)}1442397\\\phantom{147456)}\underline{\phantom{}1327104\phantom{99}}\\\phantom{147456)9}1152937\\\end{array}
Use the 8^{th} digit 7 from dividend 291695775
\begin{array}{l}\phantom{147456)}00000197\phantom{16}\\147456\overline{)291695775}\\\phantom{147456)}\underline{\phantom{}147456\phantom{999}}\\\phantom{147456)}1442397\\\phantom{147456)}\underline{\phantom{}1327104\phantom{99}}\\\phantom{147456)9}1152937\\\phantom{147456)}\underline{\phantom{9}1032192\phantom{9}}\\\phantom{147456)99}120745\\\end{array}
Find closest multiple of 147456 to 1152937. We see that 7 \times 147456 = 1032192 is the nearest. Now subtract 1032192 from 1152937 to get reminder 120745. Add 7 to quotient.
\begin{array}{l}\phantom{147456)}00000197\phantom{17}\\147456\overline{)291695775}\\\phantom{147456)}\underline{\phantom{}147456\phantom{999}}\\\phantom{147456)}1442397\\\phantom{147456)}\underline{\phantom{}1327104\phantom{99}}\\\phantom{147456)9}1152937\\\phantom{147456)}\underline{\phantom{9}1032192\phantom{9}}\\\phantom{147456)99}1207455\\\end{array}
Use the 9^{th} digit 5 from dividend 291695775
\begin{array}{l}\phantom{147456)}000001978\phantom{18}\\147456\overline{)291695775}\\\phantom{147456)}\underline{\phantom{}147456\phantom{999}}\\\phantom{147456)}1442397\\\phantom{147456)}\underline{\phantom{}1327104\phantom{99}}\\\phantom{147456)9}1152937\\\phantom{147456)}\underline{\phantom{9}1032192\phantom{9}}\\\phantom{147456)99}1207455\\\phantom{147456)}\underline{\phantom{99}1179648\phantom{}}\\\phantom{147456)9999}27807\\\end{array}
Find closest multiple of 147456 to 1207455. We see that 8 \times 147456 = 1179648 is the nearest. Now subtract 1179648 from 1207455 to get reminder 27807. Add 8 to quotient.
\text{Quotient: }1978 \text{Reminder: }27807
Since 27807 is less than 147456, stop the division. The reminder is 27807. The topmost line 000001978 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1978.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}