Evaluate
\frac{29}{5}=5.8
Factor
\frac{29}{5} = 5\frac{4}{5} = 5.8
Share
Copied to clipboard
\begin{array}{l}\phantom{500)}\phantom{1}\\500\overline{)2900}\\\end{array}
Use the 1^{st} digit 2 from dividend 2900
\begin{array}{l}\phantom{500)}0\phantom{2}\\500\overline{)2900}\\\end{array}
Since 2 is less than 500, use the next digit 9 from dividend 2900 and add 0 to the quotient
\begin{array}{l}\phantom{500)}0\phantom{3}\\500\overline{)2900}\\\end{array}
Use the 2^{nd} digit 9 from dividend 2900
\begin{array}{l}\phantom{500)}00\phantom{4}\\500\overline{)2900}\\\end{array}
Since 29 is less than 500, use the next digit 0 from dividend 2900 and add 0 to the quotient
\begin{array}{l}\phantom{500)}00\phantom{5}\\500\overline{)2900}\\\end{array}
Use the 3^{rd} digit 0 from dividend 2900
\begin{array}{l}\phantom{500)}000\phantom{6}\\500\overline{)2900}\\\end{array}
Since 290 is less than 500, use the next digit 0 from dividend 2900 and add 0 to the quotient
\begin{array}{l}\phantom{500)}000\phantom{7}\\500\overline{)2900}\\\end{array}
Use the 4^{th} digit 0 from dividend 2900
\begin{array}{l}\phantom{500)}0005\phantom{8}\\500\overline{)2900}\\\phantom{500)}\underline{\phantom{}2500\phantom{}}\\\phantom{500)9}400\\\end{array}
Find closest multiple of 500 to 2900. We see that 5 \times 500 = 2500 is the nearest. Now subtract 2500 from 2900 to get reminder 400. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }400
Since 400 is less than 500, stop the division. The reminder is 400. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}