Evaluate
5
Factor
5
Share
Copied to clipboard
\begin{array}{l}\phantom{58)}\phantom{1}\\58\overline{)290}\\\end{array}
Use the 1^{st} digit 2 from dividend 290
\begin{array}{l}\phantom{58)}0\phantom{2}\\58\overline{)290}\\\end{array}
Since 2 is less than 58, use the next digit 9 from dividend 290 and add 0 to the quotient
\begin{array}{l}\phantom{58)}0\phantom{3}\\58\overline{)290}\\\end{array}
Use the 2^{nd} digit 9 from dividend 290
\begin{array}{l}\phantom{58)}00\phantom{4}\\58\overline{)290}\\\end{array}
Since 29 is less than 58, use the next digit 0 from dividend 290 and add 0 to the quotient
\begin{array}{l}\phantom{58)}00\phantom{5}\\58\overline{)290}\\\end{array}
Use the 3^{rd} digit 0 from dividend 290
\begin{array}{l}\phantom{58)}005\phantom{6}\\58\overline{)290}\\\phantom{58)}\underline{\phantom{}290\phantom{}}\\\phantom{58)999}0\\\end{array}
Find closest multiple of 58 to 290. We see that 5 \times 58 = 290 is the nearest. Now subtract 290 from 290 to get reminder 0. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }0
Since 0 is less than 58, stop the division. The reminder is 0. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}