Evaluate
\frac{58}{3}\approx 19.333333333
Factor
\frac{2 \cdot 29}{3} = 19\frac{1}{3} = 19.333333333333332
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)290}\\\end{array}
Use the 1^{st} digit 2 from dividend 290
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)290}\\\end{array}
Since 2 is less than 15, use the next digit 9 from dividend 290 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)290}\\\end{array}
Use the 2^{nd} digit 9 from dividend 290
\begin{array}{l}\phantom{15)}01\phantom{4}\\15\overline{)290}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)}14\\\end{array}
Find closest multiple of 15 to 29. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 29 to get reminder 14. Add 1 to quotient.
\begin{array}{l}\phantom{15)}01\phantom{5}\\15\overline{)290}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)}140\\\end{array}
Use the 3^{rd} digit 0 from dividend 290
\begin{array}{l}\phantom{15)}019\phantom{6}\\15\overline{)290}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)}140\\\phantom{15)}\underline{\phantom{}135\phantom{}}\\\phantom{15)99}5\\\end{array}
Find closest multiple of 15 to 140. We see that 9 \times 15 = 135 is the nearest. Now subtract 135 from 140 to get reminder 5. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }5
Since 5 is less than 15, stop the division. The reminder is 5. The topmost line 019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}