Solve for y
y = \frac{4875}{664} = 7\frac{227}{664} \approx 7.34186747
Graph
Share
Copied to clipboard
29.3=\sqrt{1102.24-33.2y}
Use the distributive property to multiply 33.2 by 33.2-y.
\sqrt{1102.24-33.2y}=29.3
Swap sides so that all variable terms are on the left hand side.
-33.2y+1102.24=858.49
Square both sides of the equation.
-33.2y+1102.24-1102.24=858.49-1102.24
Subtract 1102.24 from both sides of the equation.
-33.2y=858.49-1102.24
Subtracting 1102.24 from itself leaves 0.
-33.2y=-243.75
Subtract 1102.24 from 858.49 by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
\frac{-33.2y}{-33.2}=-\frac{243.75}{-33.2}
Divide both sides of the equation by -33.2, which is the same as multiplying both sides by the reciprocal of the fraction.
y=-\frac{243.75}{-33.2}
Dividing by -33.2 undoes the multiplication by -33.2.
y=\frac{4875}{664}
Divide -243.75 by -33.2 by multiplying -243.75 by the reciprocal of -33.2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}